Advertisement

Mechanism of Electrical Conductivity and Thermal Conductivity in AgSbSe2

  • S. S. RagimovEmail author
  • A. A. Saddinova
  • A. I. Aliyeva
Article
  • 1 Downloads

Research was done on electrical conductivity and thermal conductivity of AgSbSe2 in the temperature range of 80–330 K. It was demonstrated that charge transfer in AgSbSe2 is carried out by means of hopping conductivity of carriers over localized states. The localized state radius and densities of localized states at the Fermi level were calculated. It was demonstrated that high defectiveness of AgSbSe2 leads to the low value of lattice thermal conductivity.

Keywords

thermoelectric material hopping conductivity thermal conductivity defects 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. D. Dudkin, A. N. Ostranitsa, Proceedings of the USSR Academy of Sciences [in Russian], 124, Issue 1, 94–97 (1959).Google Scholar
  2. 2.
    S. Geller S. and J. H. Wernick, Acta Crystallogr., 12, 46–54 (1959).CrossRefGoogle Scholar
  3. 3.
    S. N. Guin, A. Chatterjee, and K. Biswas, Royal Soc. Chem. Adv., 4, 11811–11815 (2014).Google Scholar
  4. 4.
    M. D. Nielsen, V. Ozolins, and J. P. Heremans, Energy Environ. Sci., 6, 570–578 (2013).CrossRefGoogle Scholar
  5. 5.
    S. S. Ragimov, A. I. Aliyeva, A. A. Saddinova, and Y. R. Aliyeva, Transactions of Azerbaijan National Academy of Sciences, Physics and Astronomy, Issue 5, 105–109 (2017).Google Scholar
  6. 6.
    A. V. Dmitriev, I. P. Zvyagin, Physics-Uspekhi, 53, Issue 8, 789–804 (2010).ADSCrossRefGoogle Scholar
  7. 7.
    K. Bisvast, Proc. Indian Natn. Sci. Acad., 81, Issue 4, 903–913 (2015).Google Scholar
  8. 8.
    N. F. Mott and E. A. Davis, Electronic Processes in Non-Crystalline Materials, Clarendon Press, Oxford University Press, Oxford (1971).Google Scholar
  9. 9.
    B. M. Goltzman, V. A. Kudinov, I. A. Smirnov, Semiconductor Thermoelectric Materials on the Basis of Bi2Te3 [in Russian], Nauka, Moscow (1972).Google Scholar
  10. 10.
    K. Wojciechowski, J. Tobola, M. Schmidt, and R. Zybala, J. Phys. Chem. Solids, DOI:  https://doi.org/10.1016/j.jpcs.2008.06.148 (2008).
  11. 11.
    R. S. Kumar, A. Sekar, N. V. Jaya, and S. Natarajan, J. Alloys Compounds, 285, 48–50 (1999).CrossRefGoogle Scholar
  12. 12.
    S. N. Guin, A. Chatterjee, D. S. Negi, et al., Energy Environ. Sci., DOI:  https://doi.org/10.1039/C3EE41935E (2013).
  13. 13.
    M. Schmidt, R. Zybayla, and K. T. Wojciechowski, Ceramic Mater., 62, Issue 4, 465–470 (2010).Google Scholar
  14. 14.
    S. A. Aliyev, S. S. Ragimov, I. Tagiyev, Russ. Phys. J. [in Russian], 38, Issue 1, 123–125 (1995).Google Scholar
  15. 15.
    S. S. Ragimov, A. E. Babayeva, and A. I. Aliyeva, Low Temperature Physics, 44, 1195, DOI:  https://doi.org/10.1063/1.5062157 (2018).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • S. S. Ragimov
    • 1
    Email author
  • A. A. Saddinova
    • 1
  • A. I. Aliyeva
    • 1
  1. 1.Institute of Physics of the National Academy of SciencesBakuAzerbaijan

Personalised recommendations