Advertisement

Evolution of Surface Morphology of Anthracene Single Crystals Under Annealing

  • V. A. NovikovEmail author
  • R. M. Gadirov
  • T. N. Kopylova
  • T. A. Solodova
  • I. A. Bobrovnikova
  • I. V. Ivonin
  • E. V. Tereshchenko
Article

In this work, the effect of formation of macrosteps under dissolution of the anthracene single crystal surface is shown for the first time. Under standard conditions (room temperature, atmospheric pressure, natural illumination), the etching process of the anthracene single crystal surface can be divided into two stages: formation of macrosteps up to 15 μm in width and 200 nm in height and formation of the step inhibition centers more than 300 nm in height and up to 3 μm in width. The second stage leads to a significant increase in the surface roughness due to the formation of a wave-like relief.

Keywords

single crystals surface processes anthracene annealing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Y. Inoue, et al., J. Appl. Phys., 95, No. 10,. 5795–5799 (2004).ADSCrossRefGoogle Scholar
  2. 2.
    A. N. Aleshin, et al., Appl. Phys. Lett., 84, No. 26, 5383–5385 (2004).ADSCrossRefGoogle Scholar
  3. 3.
    L. Fabbrizzi, et al., Angewandte Chemie Int. Edition in English, 33, No. 19, 1975–1977 (1994).CrossRefGoogle Scholar
  4. 4.
    L. Fabbrizzi and A. Poggi, Chem. Soc. Rev., 24, No. 3, 197–202 (1995).CrossRefGoogle Scholar
  5. 5.
    J. I. Hopkins, Rev. Sci. Instrum., 22, No. 1, 29–33 (1951).ADSCrossRefGoogle Scholar
  6. 6.
    M. Slootsky, Y. Zhang, and S. R. Forrest, Phys. Rev. B, 86, No. 4, 045312 (2012).Google Scholar
  7. 7.
    S. Kéna-Cohen and S. R. Forrest, Nature Photon., 4, No. 6, 371 (2010).ADSCrossRefGoogle Scholar
  8. 8.
    R. A. Laudise, et al., J. Cryst. Growth, 187, Nos. 3–4, 449–454 (1998).Google Scholar
  9. 9.
    V. Nagarajan, A. N. Ananth, and S. Ramaswamy, Mater. Res. Exp., 4, No. 12, 125102 (2017).CrossRefGoogle Scholar
  10. 10.
    N. Sinha, et al., Physica B: Condensed Matter., 470, 15–20 (2015).ADSCrossRefGoogle Scholar
  11. 11.
    R. Katoh, et al., J. Phys. Chem. C, 113, No. 7, 2961–2965 (2009).CrossRefGoogle Scholar
  12. 12.
    P. Zhang, et al., J. Cryst. Growth, 311, No. 23–24, 4708–4713 (2009).Google Scholar
  13. 13.
    S. Jo, et al., Appl. Surf. Sci., 252, No. 10, 3514–3519 (2006).ADSCrossRefGoogle Scholar
  14. 14.
    S. Jo, et al., Jpn. J. Appl. Phys., 44, No. 6R, 4187 (2005).ADSCrossRefGoogle Scholar
  15. 15.
    M. A. Siddiqi, R. A. Siddiqui, and B. Atakan, J. Chem. Eng. Data, 54, No. 10, 2795–2802 (2009).CrossRefGoogle Scholar
  16. 16.
    G. M. Crisp and S. H. Walmsley, Chem. Phys., 68, No. 1–2, 213–222 (1982).CrossRefGoogle Scholar
  17. 17.
    A. G. Chynoweth, J. Chem. Phys., 22, No. 6, 1029–1032 (1954).ADSCrossRefGoogle Scholar
  18. 18.
    A. R. Reddy and M. Bendikov, Chem. Commun., No. 11, 1179–1181 (2006).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • V. A. Novikov
    • 1
    Email author
  • R. M. Gadirov
    • 1
  • T. N. Kopylova
    • 1
  • T. A. Solodova
    • 1
  • I. A. Bobrovnikova
    • 1
  • I. V. Ivonin
    • 1
  • E. V. Tereshchenko
    • 1
  1. 1.National Research Tomsk State UniversityTomskRussia

Personalised recommendations