Current-Voltage Characteristics of nBn Structures Based on Mercury Cadmium Telluride Epitaxial Films

  • A. V. VoitsekhovskiiEmail author
  • S. N. Nesmelov
  • S. M. Dzyadukh
  • S. A. Dvoretsky
  • N. N. Mikhailov
  • G. Yu. Sidorov

The current – voltage characteristics of nBn structures based on HgCdTe grown by molecular beam epitaxy (MBE) on GaAs substrates in the temperature range 9–300 K were experimentally studied. The choice of technological parameters of nBn structures was determined by the possibilities of creating infrared detectors for the 3–5 μm spectral range (MWIR). Structures with various compositions (from 0.67 to 0.84) and thicknesses (from 120 to 300 nm) of the barrier layers were studied. It was established that the composition in the barrier layer exerts the greatest influence on the type of current–voltage characteristics. For a composition equal to 0.84, the current density at small reverse bias is much lower than that for structures with lower compositions in the barrier. For structures with pronounced temperature dependence of the current density, activation energies were found that ranged from 66 to 123 meV. Studies of nBn structures with various electrode areas have shown that for high current densities, leakage along the lateral walls plays an important role. Possible mechanisms for the formation of current – voltage characteristics in MWIR nBn structures based on MBE HgCdTe are discussed.


mercury cadmium telluride HgCdTe nBn structure molecular beam epitaxy current–voltage characteristic activation energy surface leakage current photocurrent 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. Сhu and A. Sher, Device Physics of Narrow Gap Semiconductors, Springer, N. Y. (2010).Google Scholar
  2. 2.
    M. A. Kinch, State-of-the-Art Infrared Detector Technology, SPIE Press, Bellingham, Washington (2014).CrossRefGoogle Scholar
  3. 3.
    A. Rogalski, Infrared Detectors [Russian translation], Nauka, Novosibirsk (2003).Google Scholar
  4. 4.
    S. Maimon and G. W. Wicks, Appl. Phys. Lett., 89, No. 15, 151109 (2006).ADSCrossRefGoogle Scholar
  5. 5.
    W. Lei, J. Antoszewski, and L. Faraone, Appl. Phys. Rev., 2, No. 4, 041303 (2015).ADSCrossRefGoogle Scholar
  6. 6.
    I. I. Izhnin, A. V. Voitsekhovsky, A. G. Korotaev, et al., Infrared Phys. Technol., 81, 52–58 (2017).ADSCrossRefGoogle Scholar
  7. 7.
    A. V. Voitsekhovskii and D. I. Gorn, Prikladn. Fiz., No. 4, 83–86 (2017).Google Scholar
  8. 8.
    H. S. Kim, O. O. Cellek, Z. Y. Lin, et al., Appl. Phys. Lett., 101, No. 16, 161114 (2012).ADSCrossRefGoogle Scholar
  9. 9.
    C. J. Hill, A. Soibel, S. A. Keo, et al., Proc. SPIE, 7298, 729804 (2009).CrossRefGoogle Scholar
  10. 10.
    E. Delli, V. Letka, P. D. Hodgson, et al., ACS Photonics, 6, No. 2, 538–544 (2019).CrossRefGoogle Scholar
  11. 11.
    P. Martyniuk, M. Kopytko, and A. Rogalski, Opto-Electron. Rev., 22, No. 2, 127–146 (2014).ADSGoogle Scholar
  12. 12.
    A. M. Itsuno, J. D. Phillips, and S. Velicu, J. Electron. Mater., 40, No. 8, 1624–1629 (2011).ADSCrossRefGoogle Scholar
  13. 13.
    F. Uzgur and S. Kocaman, Infrared Phys. Technol., 97, 123–128 (2019).ADSCrossRefGoogle Scholar
  14. 14.
    A. V. Voitsekhovskii, D. I. Gorn, S. A. Dvoretskii, et al., Prikladn. Fiz., No. 5, 50–54 (2018).Google Scholar
  15. 15.
    Z. H. Ye, Y. Y. Chen, P. Zhang, et al., Proc. SPIE, 9070, 90701L (2014).ADSGoogle Scholar
  16. 16.
    M. Kopytko, J. Wróbel, K. Jóźwikowski, et al., J. Electron. Mater., 44, No. 1, 158–166 (2015).ADSCrossRefGoogle Scholar
  17. 17.
    M. Kopytko and A. Rogalski, Prog. Quant. Electron., 47, 1–18 (2016).ADSCrossRefGoogle Scholar
  18. 18.
    N. D. Akhavan, G. Jolley, J. Antoszewski, and L. Faraone, Appl. Phys. Lett., 105, No. 12, 121110 (2014).ADSCrossRefGoogle Scholar
  19. 19.
    N. D. Akhavan, G. A. Umana-Membreno, R. Gu, et al., IEEE Trans. Electron. Dev., 65, No. 2, 591–598 (2018).ADSCrossRefGoogle Scholar
  20. 20.
    A. M. Itsuno, J. D. Phillips, and S. Velicu, Appl. Phys. Lett., 100, No. 16, 161102 (2012).ADSCrossRefGoogle Scholar
  21. 21.
    S. Velicu, J. Zhao, M. Morley, et al., Proc. SPIE, 8268, 826282X (2012).Google Scholar
  22. 22.
    A. M. Itsuno, J. D. Phillips, and S. Velicu, J. Electron. Mater., 41, No. 10, 2886–2892 (2012).ADSCrossRefGoogle Scholar
  23. 23.
    O. Gravrand, F. Boulard, A. Ferron, et al., J. Electron. Mater., 44, No. 9, 3069– 3075 (2015).ADSCrossRefGoogle Scholar
  24. 24.
    M. Kopytko, A. Kębłowski, W. Gawron, et al., Opto-Electron. Rev., 21, No. 4, 402–405 (2013).ADSCrossRefGoogle Scholar
  25. 25.
    A. V. Voitsekhovskii, S. N. Nesmelov, S. M. Dzyadukh, et al., Prikladn. Fiz., No. 4, 43–48 (2018).Google Scholar
  26. 26.
    R. Fu and J. Pattison, Opt. Eng., 51, No. 10, 104003 (2012).ADSCrossRefGoogle Scholar
  27. 27.
    P. Zhang, Z. H. Ye, C. H. Sun, et al., J. Electron. Mater., 45, No. 9 , 4716–4720 (2016).ADSCrossRefGoogle Scholar
  28. 28.
    A. M. Itsuno, Bandgap-Engineered HgCdTe Infrared Detector Structures for Reduced Cooling Requirements, Ph. D. dissertation, University of Michigan (2012).Google Scholar
  29. 29.
    A. Rogalski, Rep. Prog. Phys., 68, No. 10, 2267 (2005).ADSCrossRefGoogle Scholar
  30. 30.
    M. Kopytko, A. Kębłowski, W. Gawron, et al., IEEE Trans. Electron. Dev., 61, No. 11, 3803–3807 (2014).ADSCrossRefGoogle Scholar
  31. 31.
    Handbook of Infrared Detection Technologies, eds. M. Henini and M. Razeghi, Elsevier Advanced Technology, Oxford (2002).Google Scholar
  32. 32.
    W. E. Tennant, D. Lee, M. Zandian, et al., J. Electron. Mater., 37, No. 9, 1406–1410 (2008).ADSCrossRefGoogle Scholar
  33. 33.
    W. E. Tennant, J. Electron. Mater., 9, No. 7, 1030–1035 (2010).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • A. V. Voitsekhovskii
    • 1
    Email author
  • S. N. Nesmelov
    • 1
  • S. M. Dzyadukh
    • 1
  • S. A. Dvoretsky
    • 1
    • 2
  • N. N. Mikhailov
    • 2
  • G. Yu. Sidorov
    • 2
  1. 1.National Research Tomsk State UniversityTomskRussia
  2. 2.Rzhanov Institute of Semiconductor Physics of the Siberian Branch of the Russian Academy of SciencesNovosibirskRussia

Personalised recommendations