Advertisement

Russian Physics Journal

, Volume 62, Issue 6, pp 1001–1008 | Cite as

Multi-Pulse Operation of Coaxial Magnetic Plasma Accelerator for Dynamic Synthesis of Iron Oxide Powder

  • A. A. SivkovEmail author
  • I. I. Shanenkov
  • A. S. Ivashutenko
  • M. I. Gukov
  • L. Li
  • G. Li
  • V. Khan’
Article
  • 2 Downloads

The paper considers the use of multi-pulsed synthesis facility based on coaxial magnetic plasma accelerator for plasma dynamic synthesis of iron oxide powder with a high content of ε-Fe2O3 phase. It is shown that the multipulsed operation of coaxial magnetic plasma accelerator considerably lowers the discharge-current amplitudes and one-pulse power supply, thereby decreasing the dynamic load in the whole system. It is found that the formation of the increased amount of ε-Fe2O3 phase up to ~70 wt.% depends on the number of sequential pulses of power supply. Optimization studies determine the most favorable operating conditions with regard to an effective performance of the proposed system and maintaining the phase composition of the product obtained.

Keywords

plasma dynamic synthesis discharge plasma coaxial magnetic plasma accelerator multi-pulsed operation iron oxide 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Q. A. Pankhurst, J. Connolly, S. K. Jones, and J. Dobson, J. Phys. D: Appl. Phys., 36, R167–181 (2003).ADSCrossRefGoogle Scholar
  2. 2.
    K. Y. Rajpure, Superlattice Microstruct., 77, 181–195 (2015).ADSCrossRefGoogle Scholar
  3. 3.
    S. Mornet, S. Vasseur, F. Grasset, and E. J. Duguet, Mater. Chem., 14, 2161–2751(2004).CrossRefGoogle Scholar
  4. 4.
    M. Tadic, V. Spasojevic, V. Kusigerski, et al., Scripta Mater., 58, 703–706 (2008).CrossRefGoogle Scholar
  5. 5.
    N. V. Abramov and P. P. Gorbyk, Surface, 4, No. 19, 246 (2012).Google Scholar
  6. 6.
    B. David, N. Pizúrová, P. Synek, et al., Mater. Lett., 116, 370–373 (2014).CrossRefGoogle Scholar
  7. 7.
    A. K. Gupta and M. Gupta, Biomaterials, 26, 1565–1573 (2005).CrossRefGoogle Scholar
  8. 8.
    S. Laurent, D. Forge, M. Port, et al., Chem. Rev., 108, 2064–2110 (2008).CrossRefGoogle Scholar
  9. 9.
    J. Jin, S. Ohkoshi, and K. Hashimoto, Adv. Mater., 16, 48–51 (2004).CrossRefGoogle Scholar
  10. 10.
    M. Yoshikiyo, A. Namai, M. Nakajima, et al., J. Appl. Phys., 115, 172613–172615 (2014).ADSCrossRefGoogle Scholar
  11. 11.
    R. Tucek, A. Zboril, S. Namai, and S. Ohkoshi, Chem. Mater., 22, 6483–6505 (2010).CrossRefGoogle Scholar
  12. 12.
    I. Shanenkov, A. Sivkov, A. Ivashutenko, et al., J. Alloy. Compd., 774, 637–645 (2019).CrossRefGoogle Scholar
  13. 13.
    V. V. Kuzenov, T. N. Polozova, and S. V. Ryzhkov, Probl. Atom. Sci. Tech., 98, No. 4, 49–52 (2015).Google Scholar
  14. 14.
    D. Yu. Gerasimov, “Electroerosive wear of plasma channel in coaxial magnetic plasma accelerator”, Candidate’s Dissertation [in Russian], TPU, Tomsk (2005), 190 p.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • A. A. Sivkov
    • 1
    Email author
  • I. I. Shanenkov
    • 1
  • A. S. Ivashutenko
    • 1
  • M. I. Gukov
    • 1
  • L. Li
    • 2
  • G. Li
    • 2
  • V. Khan’
    • 2
  1. 1.National Research Tomsk Polytechnic UniversityTomskRussia
  2. 2.Jilin UniversityChangchunChina

Personalised recommendations