Nanodipoles of Partial Disclinations and Strain Localization Mechanism of Nanostructured Materials in the Elastic Region

  • A. N. TyumentsevEmail author
  • I. A. Ditenberg
  • I. I. Sukhanov
  • A. I. Dmitriev
  • S. G. Psahie

In the course of severe plastic deformation of nickel in the Bridgman anvils, a phenomenon of strain localization is observed in the region of elastic distortions, which is accompanied by the formation of reorientation nanobands with an elastic crystal lattice curvature of hundreds of deg/μm and nanodipoles of partial disclinations as the defects of elastically deformed medium and carriers of elastic shears and rotations at the front of nanoband propagation. A theoretical analysis is performed of the elastically stressed state and energy of these defects, including the case of their transformation into more complex ensembles of interconnected disclinations. Using the results obtained and the data of an MD investigation of dynamic vortex defects formed in the region of elastic distortions, the mechanisms of strain localization in this region in the stages of nucleation and propagation of these nanobands are proposed.


electron microscopy crystal lattice curvature disclinations internal stresses molecular dynamics dynamic vortices 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. N. Vergazov, V. A. Likhachev, and V. V. Rybin, Fiz. Met. Metalloved., 42,, No. 1, 146–154 (1976).Google Scholar
  2. 2.
    V. A. Likhachev and R. Yu. Khairov, Introduction into the Dislocation Theory [in Russian], Lening. Univ. Publ., Leningrad (1975).Google Scholar
  3. 3.
    A. N. Tyumentsev, A. D. Korotaev, V. Ch. Gonchikov, and A. I. Olemskoy, Izv. Vyssh. Uchebn. Zaved. Fiz., 34, No. 3, 81–92 (1991).Google Scholar
  4. 4.
    A. E. Romanov and A. L. Kolesnikova, Prog. Mater. Sci., 54, No. 6, 740–769 (2009).CrossRefGoogle Scholar
  5. 5.
    V. I. Vladimirov and A. E. Romanov, Disclinations in Crystals [in Russian], Nauka, Leningrad (1986).Google Scholar
  6. 6.
    V. V. Rybin, V. N. Perevezentsev, and Yu. V. Svirina, Technical Physics, 61, Iss. 6, 898–903 (2016).ADSCrossRefGoogle Scholar
  7. 7.
    A. N. Tyumentsev and I. A. Ditenberg, Russ. Phys. J., 54, No. 9, 977–988 (2012).CrossRefGoogle Scholar
  8. 8.
    A. N. Tyumentsev, V. A. Ditenberg, A. D. Korotaev, and K. I. Denisov, Phys. Mesomech., 16, No. 4, 319 –334 (2013).|Google Scholar
  9. 9.
    A. N. Tyumentsev, I. A. Ditenberg, E. A. Korznikova, et al., Russ. Phys. J., 53, No. 12, 1295–1304 (2011).CrossRefGoogle Scholar
  10. 10.
    I. A. Ditenberg, A. N. Tyumentsev, Гриняев K. V. Grinyaev, et al., Technical Physics, 81, Iss. 6, 68–74 (2011).Google Scholar
  11. 11.
    A. N. Tyumentsev, A. D. Korotaev, I. A. Ditenberg,, et al., Common Factors of Plastic Deformation in High-Strength and Nanocrystalline Materials [in Russian], Nauka, Novosibirsk (2018).Google Scholar
  12. 12.
    A. N. Tyumentsev, I. A. Ditenberg, Phys. Mesomech., 18, No. 2, 158–162 (2015).CrossRefGoogle Scholar
  13. 13.
    A. N. Tyumentsev, I. A. Ditenberg, and I. I. Sukhanov, Russ. Phys. J., 60, No. 10, 1831–1835 (2018).CrossRefGoogle Scholar
  14. 14.
    A. I. Dmitriev and S. G. Psahie, A. I. Dmitriev and S. G. Psahie, Tech. Phys. Lett., 31(3), 84–85 (2005).ADSCrossRefGoogle Scholar
  15. 15.
    A. I. Dmitriev, Fiz. Mezomekh., 8, No. 3, 79–92 (2005).Google Scholar
  16. 16.
    S. G. Psahie, K. P. Zolnikov, A. I. Dmitriev, et al., Phys. Mesomech., 17, No. 1, 15–22 (2014).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • A. N. Tyumentsev
    • 1
    • 2
    Email author
  • I. A. Ditenberg
    • 1
    • 2
  • I. I. Sukhanov
    • 1
    • 2
  • A. I. Dmitriev
    • 1
    • 2
  • S. G. Psahie
    • 2
  1. 1.National Research Tomsk State UniversityTomskRussia
  2. 2.Institute of Strength Physics and Materials Science of the Siberian Branch of the Russian Academy of SciencesTomskRussia

Personalised recommendations