Advertisement

Numerical Study of Amplification of Subnanosecond Radiation Pulses in the Gas Amplifier of the THL-100 Laser System

  • A. G. YastremskiiEmail author
  • N. G. Ivanov
  • V. F. Losev
Article
  • 3 Downloads

Methods for increasing the energy characteristics of the THL-100 hybrid laser system are investigated by numerical modeling. The influence of the input laser radiation energy and system of mirrors on the energy and maximal laser radiation intensity in the amplifier is investigated. The systems of amplifier mirrors in which the number of passes of the active medium changed from Nm = 27 to 39 are considered. It is shown that at Nm =27, an increase in the pump energy of the amplifier from 270 to 400 J allows the output radiation energy to be increased by a factor of 2.6 (to 8.34 J) with a maximal radiation intensity in the amplifier no more than 7 GW·cm–2. Pulse compression to an initial duration of 50 fs will allow the average output power of the THL-100 system to be increased up to 160 TW.

Keywords

numerical investigation amplification of subnanosecond pulses THL-100 laser system 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. Strickland and G. Mourou, Opt. Commun., 56, 219–221 (1985).ADSCrossRefGoogle Scholar
  2. 2.
    T. Ozaki, J. Keiffer, R. Toth, et al., Laser and Part. Beams, 24, 101–106 (2005).ADSCrossRefGoogle Scholar
  3. 3.
    S. Alekseev, A. Aristov, N. Ivanov, et al., Quantum Electron., 42, 377–379 (2012).ADSCrossRefGoogle Scholar
  4. 4.
    S. Alekseev, N. Ivanov, M. Ivanov, et al., Quantum Electron., 47, 184–187 (2017).ADSCrossRefGoogle Scholar
  5. 5.
    A. Yastremskii, N. Ivanov, and V. Losev, Quantum Electron., 48, 206–2011 (2018).ADSCrossRefGoogle Scholar
  6. 6.
    S. Alekseev, A. Aristov, Ya. Grudtsyn, et al., Quantum Electron., 43, 190–200 (2013).ADSCrossRefGoogle Scholar
  7. 7.
    S. V. Alekseev, M. V. Ivanov, N. G. Ivanov, et al., Russ. Phys. J., 60, No. 8, 1346–1352 (2017).CrossRefGoogle Scholar
  8. 8.
    A. Yastremskii, N. Ivanov, and V. Losev, Quantum Electron., 46, 982–900 (2016).ADSCrossRefGoogle Scholar
  9. 9.
    G. Malinovskii, S. Mamaev, L. Mikheev, et al., Quantum Electron., 31, 617–622 (2001).ADSCrossRefGoogle Scholar
  10. 10.
    S. Alekseev, N. G. Ivanov, V. F. Losev, et al., Opt, Atm. Okeana, 27, 326–331 (2014).Google Scholar
  11. 11.
    C. Fletcher, Computational Techniques for Fluid Dynamics [Russian translation], Mir, Moscow (1991).Google Scholar
  12. 12.
    T. Kuznetsova and L. Mikheev, Quantum Electron., 38, 969–975 (2008).ADSCrossRefGoogle Scholar
  13. 13.
    J. Fleck, Phys. Rev. B, 1, 84–100 (1970).ADSCrossRefGoogle Scholar
  14. 14.
    S. Alekseev, N. G. Ivanov, V. F. Losev, et al., Opt. Atmos. Okeana, 26, 863–866 (2013).Google Scholar
  15. 15.
    V. Losev, S. Alekseev, N. Ivanov, et al., Proc. SPIE, 7993, 799317 (2011).CrossRefGoogle Scholar
  16. 16.
    A. G. Yastremskii, M. V. Ivanov, N. G. Ivanov, and V. F. Losev, Opt. Atmos. Okeana, 29, No. 12, 121–127 (2016).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • A. G. Yastremskii
    • 1
    Email author
  • N. G. Ivanov
    • 1
  • V. F. Losev
    • 1
    • 2
  1. 1.Institute of High-Current Electronics of the Siberian Branch of the Russian Academy of SciencesTomskRussia
  2. 2.Tomsk Polytechnic UniversityTomskRussia

Personalised recommendations