Advertisement

Russian Physics Journal

, Volume 62, Issue 5, pp 900–905 | Cite as

The Influence of an External Coaxial Magnetic Field on the Characteristics of a High-Current ARC in a Vacuum Switch

  • A. V. SchneiderEmail author
  • S. A. Popov
  • E. L. Dubrovskaya
  • A. V. Batrakov
Article
  • 9 Downloads

The influence of an external synchronous axial magnetic field on the characteristics of a vacuum-arc discharge is investigated within the range of discharge currents from 6 to 14 kA. The magnetic field amplitude is regulated in a wide range (from 0 to 190 mT) irrespective of the discharge current, while the specific magnetic field induction (in mT/kA) remains constant during the arc burning time. A critical specific magnetic field induction is determined, which prevents the discharge channel from constriction in the gap. It is shown that an application of an external magnetic field does not give rise to the formation of an anode spot, while the cathode is covered with a large number of microspots evenly distributed across its surface. An analysis of the probe currents demonstrates that the density of the post-arc plasma under these conditions decreases, and its decay is accelerated.

Keywords

axial magnetic field vacuum switch high-current vacuum arc 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. C. Miller , Contrib. Plasma Phys., 29, No. 3, 223–249 (1989).ADSCrossRefGoogle Scholar
  2. 2.
    Z. Zalucki and J. Janiszewski, IEEE Trans. Plasma Sci., 27, 991–1000 (1999).ADSCrossRefGoogle Scholar
  3. 3.
    M. B. Schulman, IEEE Trans. Plasma Sci., 21, 484–488 (1993).ADSCrossRefGoogle Scholar
  4. 4.
    M. Keidar and M. B. Schulman, Proc. 19th Int. Symp. on Discharges and Electrical Insulation in Vacuum (19th ISDEIV), 210–213, Xian, China (2000).Google Scholar
  5. 5.
    A. M. Chaly, A. A. Lobatchev, S. M. Shkolnik, and K. K. Zabello, Proc. 19th Int. Symp. Discharges and Electrical Insulation in Vacuum (19th ISDEIV), 286–289, Xian, China (2000).Google Scholar
  6. 6.
    P. G. Slade, The Vacuum Interrupter. Theory, Design, and Application, Ch. 2, CRC Press, N. Y (2008).CrossRefGoogle Scholar
  7. 7.
    Z. Liu, G. Kong, H. Ma, et al., IEEE Trans. Plasma Sci., 42, No. 9, 2277–2283 (2014).ADSCrossRefGoogle Scholar
  8. 8.
    A. V. Schneider, S. A. Popov, A. V. Batrakov, et al., IEEE Trans. Plasma Sci., 41, No. 8, 2022–2028 (2013).ADSCrossRefGoogle Scholar
  9. 9.
    G. Ge, X. Cheng, M. Liao, et al., Vacuum, No. 147, 65–71 (2018).ADSCrossRefGoogle Scholar
  10. 10.
    E. V. Yakovlev, A. V. Schneider, E. L. Dubrovskaya, and S. A. Popov, Russ. Phys.J., 61, No. 6, 1034–1038 (2018).CrossRefGoogle Scholar
  11. 11.
    S. Popov, A. Schneider, E. Dubrovskaya, and A. Batrakov, Proc. 28th Int. Symp. Discharges and Electrical Insulation in Vacuum (28th ISDEIV), 205–208, Greifswald, Germany (2018).Google Scholar
  12. 12.
    A. Khakpour et al., IEEE Trans. Plasma Sci., 44, No. 12, 3337–3345 (2016).ADSCrossRefGoogle Scholar
  13. 13.
    S. A. Popov, A. V. Schneider, A. V. Batrakov, et al., Tech. Phys., 57, Iss. 7, 938–944 (2012).CrossRefGoogle Scholar
  14. 14.
    A. V. Schneider, S. A. Popov, V. A. Lavrinovich, and D. D. Maral, Russ. Phys. J., 61, No. 7, 1324–1328 (2018).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • A. V. Schneider
    • 1
    Email author
  • S. A. Popov
    • 1
  • E. L. Dubrovskaya
    • 1
  • A. V. Batrakov
    • 1
  1. 1.High Current Electronics Institute of the Siberian Branch of the Russian Academy of SciencesTomskRussia

Personalised recommendations