Advertisement

Structure and Mechanical Properties of 3D-Printed Ceramic Specimens

  • V. V. PromakhovEmail author
  • A. S. Zhukov
  • A. B. Vorozhtsov
  • N. A. Schults
  • S. V. Kovalchuk
  • S. V. Kozhevnikov
  • A. V. Olisov
  • V. A. Klimenko
Article

The paper presents the research results of the structure, phase composition and mechanical properties of aluminum oxide ceramic specimens obtained by the additive manufacturing technology. The manufacturing process and the original equipment are described. The formation of several types of pores and surface boundaries between the layers is shown during ceramic 3D printing. It is found that for the different printing strategies, the different mechanical properties are observed in the obtained specimens that are stipulated by the structural anisotropy.

Keywords

additive technologies ceramics structure properties 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Deckers, J. Vleugels, and J. Kruth, J. Ceram. Sci. Techn., 5, 245–260 (2014).Google Scholar
  2. 2.
    V. Promakhov, I. Zhukov, S. Vorozhtsov, et al., Refract. Ind. Ceram., 56, No. 6, 610–614 (2016).CrossRefGoogle Scholar
  3. 3.
    V. Promakhov, et al., AIP Publ., 1772, (2016)Google Scholar
  4. 4.
    I. Gibson, D. W. Rosen, and B. Strucker, Additive Manufacturing Technologies, Springer, New York (2010).CrossRefGoogle Scholar
  5. 5.
    L. Thijs, et al., Acta Mater., 58, No. 9, 3303–3312 (2010).CrossRefGoogle Scholar
  6. 6.
    J. Alcisto, et al., J. Mater. Eng. Perform., 20, No. 2, 203–212 (2011).CrossRefGoogle Scholar
  7. 7.
    T. Wang, et al., J. Alloys Compd., 632, 505–513 (2010).CrossRefGoogle Scholar
  8. 8.
    B. Baufeld, et al., Mater. Des., 31, 106–111 (2010).CrossRefGoogle Scholar
  9. 9.
    J. Gonzalez-Gutierrez, S. Cano, S. Schuschnigg, et al., Materials, 11, 840 (2018).ADSCrossRefGoogle Scholar
  10. 10.
    C. Bae and J. Halloran, Int. J. Appl. Ceram. Technol., 8, No. 6, 1255–1262 (2011).CrossRefGoogle Scholar
  11. 11.
    W. Zhou, D. Li, and H. Wang, Rapid Prototyping J., 16, No. 1, 29–35 (2010).CrossRefGoogle Scholar
  12. 12.
    M. Schwentenwein, P. Schneider, and J. Hpma, Adv. Sci. Technol., 88, 60–64 (2014).CrossRefGoogle Scholar
  13. 13.
    V. Promakhov, et al., Materials, 11, 2361 (2018).ADSCrossRefGoogle Scholar
  14. 14.
    A. A. Kozulin, A. S. Narikovich, V. D. Aliev, et al., Izv. Vyssh. Uchebn. Zaved., Fiz., 59, No. 7/2, 108–112 (2016).Google Scholar
  15. 15.
    P. Zhang, J. Liu, and A. To, Scripta Mater., 135, 148–152 (2017).CrossRefGoogle Scholar
  16. 16.
    S. Wolf, T. Lee, E. Faierson, et al., J. Manuf. Process., 24, 397–405 (2016).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • V. V. Promakhov
    • 1
    Email author
  • A. S. Zhukov
    • 1
  • A. B. Vorozhtsov
    • 1
  • N. A. Schults
    • 1
  • S. V. Kovalchuk
    • 1
  • S. V. Kozhevnikov
    • 2
  • A. V. Olisov
    • 1
  • V. A. Klimenko
    • 1
  1. 1.National Research Tomsk State UniversityTomskRussia
  2. 2.Belgorod State Technological University named after V.G. ShukhovBelgorodRussia

Personalised recommendations