Advertisement

Admittance Characteristics of nBn Structures Based on Hgcdte Grown by Molecular Beam Epitaxy

  • A. V. VoitsekhovskiiEmail author
  • S. N. Nesmelov
  • S. M. Dzyadukh
  • S. A. Dvoretsky
  • N. N. Mikhailov
  • G. Yu. Sidorov
Article
  • 7 Downloads

For the first time, the admittance of nBn structures based on HgCdTe grown by molecular beam epitaxy was experimentally investigated in a wide range of frequencies and temperatures. The CdTe content in the barrier layer of studied samples varied from 0.74 to 0.83, and the thickness of this layer was from 210 to 300 nm. The experimental frequency dependences of the admittance of nBn structures are in good agreement with the results of calculation by the equivalent circuit method. The proposed equivalent circuit consists of two seriesconnected chains, each of which contains a capacitance and a resistance connected in parallel. The change in the values of the equivalent circuit elements during heating from 9 to 300 K and under application of the bias voltage was studied. It is shown for the first time that illumination of nBn structures based on HgCdTe by radiation with a wavelength of 0.91 μm causes relaxation of values of the equivalent circuit parameters for hundreds of minutes after the illumination is turned off. Mechanisms of the equivalent circuit element formation, as well as peculiarities of the admittance dependences at various parameters of the barrier layers, are discussed.

Keywords

mercury cadmium telluride n-HgCdTe nBn structure unipolar barrier detectors molecular beam epitaxy admittance equivalent circuit low-temperature measurements 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. A. Kinch State-of-the-Art Infrared Detector Technology, SPIE Press, Bellingham, Washington (2014).CrossRefGoogle Scholar
  2. 2.
    A. Rogalski, Infrared detectors: 2nd. ed., CRC Press, Taylor & Francis Group, New York (2010).CrossRefGoogle Scholar
  3. 3.
    S. Maimon and G. W. Wicks, Appl. Phys. Lett., 89, No. 15, 151109 (2006).ADSCrossRefGoogle Scholar
  4. 4.
    J. R. Pedrazzani, S. Maimon, and G. W. Wicks, Electron. Lett., 44, No. 25, 1487–1488 (2008).CrossRefGoogle Scholar
  5. 5.
    M. Reine, B. Pinkie, J. Schuster, et al., J. Electron. Mater., 43, No. 8, 2915– 2934 (2014).ADSCrossRefGoogle Scholar
  6. 6.
    D. Z. Ting, A. Soibel, A. Khoshakhlagh, et al., Opt. Eng., 56, No. 9, 091606 (2017).ADSCrossRefGoogle Scholar
  7. 7.
    A. Soibel, S. A. Keo, A. Fisher, et al., Appl. Phys. Lett., 112, No. 4, 041105 (2018).ADSCrossRefGoogle Scholar
  8. 8.
    E. Delli, V. Letka, P. D. Hodgson, et al., ACS Photonics, 6, No. 2,. 538–544 (2019).CrossRefGoogle Scholar
  9. 9.
    A. M. Itsuno, J. D. Phillips, and S. Velicu, J. Electron. Mater., 40, No. 8 ,1624– 1629 (2011).ADSCrossRefGoogle Scholar
  10. 10.
    P. Martyniuk, M. Kopytko, and A. Rogalski, Opto-Electron. Rev., 22, No. 2, 127–146 (2014).ADSGoogle Scholar
  11. 11.
    A. V. Voitsekhovskii and D. I. Gorn, J. Commun. Technol. Electron., 62, No. 3, 314–316 (2017).CrossRefGoogle Scholar
  12. 12.
    N. D. Akhavan, G. A. Umana-Membreno, R. Gu, et al., IEEE Trans. Electron. Dev., 65, No. 10, 4340–4345 (2018).ADSCrossRefGoogle Scholar
  13. 13.
    M. A. Kinch, J. Electron. Mater., 44, No. 9, 2969–2976 (2015).ADSCrossRefGoogle Scholar
  14. 14.
    J. Piotrowski and A. Rogalski, Hot-Operating-Temperature Infrared, SPIE Press, Bellingham, Washington (2007).CrossRefGoogle Scholar
  15. 15.
    F. Uzgur and S. Kocaman, Infrared Phys. Technol., 97, 123–128 (2019).ADSCrossRefGoogle Scholar
  16. 16.
    N. D. Akhavan, G. Jolley, G. A. Umana-Membreno, et al., J. Electron. Mater., 44, No. 9, 3044–3055 (2015).ADSCrossRefGoogle Scholar
  17. 17.
    Z. H. Ye, Y. Y. Chen, P. Zhang, et al., Proc. SPIE, 9070, 90701L (2014).Google Scholar
  18. 18.
    M. Kopytko, J. Wróbel, K. Jóźwikowski, et al., J. Electron. Mater., 44, No. 1, 158–166 (2015).ADSCrossRefGoogle Scholar
  19. 19.
    A. V. Voitsekhovskii, D. I. Gorn, S. A. Dvoretskii, et al., Prikladn. Fiz., No. 5, 50–54 (2018).Google Scholar
  20. 20.
    A. M. Itsuno, J. D. Phillips, and S. Velicu, Appl. Phys. Lett., 100, No. 16, 161102 (2012).ADSCrossRefGoogle Scholar
  21. 21.
    S. Velicu, J. Zhao, M. Morley, et al., Proc. SPIE, 8268, 826282X (2012).Google Scholar
  22. 22.
    O. Gravrand, F. Boulard, A. Ferron, et al., J. Electron. Mater., 44, No. 9 , 3069– 3075 (2015).ADSCrossRefGoogle Scholar
  23. 23.
    M. Kopytko, A. Kębłowski, W. Gawron, et al., Opto-Electron. Rev., 21, No. 4, 402–405 (2013).ADSCrossRefGoogle Scholar
  24. 24.
    M. Kopytko, A. Kębłowski, W. Gawron, et al., Opto-Electron. Rev., 23, No. 2, 143–148 (2015).ADSCrossRefGoogle Scholar
  25. 25.
    H. Hirwa, S. Pittner, and V. Wagner, Org. Electron., 24, 303–314 (2015).CrossRefGoogle Scholar
  26. 26.
    I. I. Izhnin, S. N. Nesmelov, S. M. Dzyadukh, et al., Nanoscale Res. Lett., 11, 53 (2016).ADSCrossRefGoogle Scholar
  27. 27.
    J. V. Li and G. Ferrari, Capacitance Spectroscopy of Semiconductors, Pan Stanford Publishing, Singapore (2018).CrossRefGoogle Scholar
  28. 28.
    D. R. Rhiger, E. P. Smith, B. P. Kolasa, et al., J. Electron. Mater., 45, No. 9, 4646–4653 (2016).ADSCrossRefGoogle Scholar
  29. 29.
    P. Klipstein, O. Klin, S. Grossman, et al., Proc. SPIE, 7608, 76081V (2010).CrossRefGoogle Scholar
  30. 30.
    J. P. Perez, A. Evirgen, J. Abautret, et al., Proc. SPIE, 9370, 93700N (2015).CrossRefGoogle Scholar
  31. 31.
    A. V. Voitsekhovskii, S. N. Nesmelov, S. M. Dzyadukh, et al., Prikladn. Fiz., No. 4, 43–48 (2018).Google Scholar
  32. 32.
    R. Fu and J. Pattison, Opt. Eng., 51, No. 10, 104003 (2012).ADSCrossRefGoogle Scholar
  33. 33.
    P. Zhang, Z. H. Ye, C. H. Sun, et al., J. Electron. Mater., 45, No. 9 , 4716–4720 (2016).ADSCrossRefGoogle Scholar
  34. 34.
    E. H. Nicollian and J. R. Brews, MOS (Metal Oxide Semiconductor) Physics and Technology, Wiley, New York et al. (1982).Google Scholar
  35. 35.
    S. M. Sze and K. Ng Kwok, Physics of Semiconductor Devices, 3rd ed., Wiley, N. Y. (2007).Google Scholar
  36. 36.
    M. Ershov, H. C. Liu, L. Li, et al., IEEE Trans. Electron. Dev., 45, No. 10, 2196– 2206 (1998).ADSCrossRefGoogle Scholar
  37. 37.
    N. A. Penin, Fiz. Tekh. Poluprovodn., 30, No. 4, 626–634 (1996).Google Scholar
  38. 38.
    B. K. Jones, J. Santana, M. McPherson, et al., Sol. State Commun., 107, No. 2, 47–50 (1998).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • A. V. Voitsekhovskii
    • 1
    Email author
  • S. N. Nesmelov
    • 1
  • S. M. Dzyadukh
    • 1
  • S. A. Dvoretsky
    • 1
    • 2
  • N. N. Mikhailov
    • 2
  • G. Yu. Sidorov
    • 2
  1. 1.National Research Tomsk State UniversityTomskRussia
  2. 2.Rzhanov Institute of Semiconductor Physics of the Siberian Branch of the Russian Academy of SciencesNovosibirskRussia

Personalised recommendations