Advertisement

Russian Physics Journal

, Volume 62, Issue 5, pp 810–817 | Cite as

Parameters of a Complex Structure of Optical Functions of Dimagnesium Stannide

  • V. Val. SobolevEmail author
  • V. V. Sobolev
Article
  • 5 Downloads

The spectra of sixteen optical functions of Mg2Sn crystal are determined at 77 K in the range 1–11 eV. The calculations were performed using known experimental reflection spectra R(E), software packages created on the basis of the Kramers–Kronig relations, and analytical formulas for the communication between optical functions. Their main peculiarities and general regularities have been established. The integral spectra of the imaginary part of the dielectric constant ε2(E) are decomposed into elementary components in the range from 2 to 5.5 eV using an improved nonparametric method of combined Argand diagrams taking into account the effective number of valence electrons participating in the formation of individual bands. The energies of maxima and the strengths of oscillators of elementary components of the transition bands are determined and their assumed nature and localization are proposed on the basis of the data of well-known theoretical calculations.

Keywords

dimagnesium stannide optical function maximum shoulder interband transition exciton oscillator strength dielectric constant volume and surface energy losses Argand diagram improved method 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Wei Liu, Xiaojian Tan, Kang Yin, et al., Phys. Rev. Lett., 108, 166601 (2012).ADSCrossRefGoogle Scholar
  2. 2.
    O. Benhalal, A. Chahed, S. Kaksari, et al., Phys. Stat. Sol. B, 242, No. 10,. 2022 (2005).ADSCrossRefGoogle Scholar
  3. 3.
    M. Y. Au-Yang and L. Cohen Marvin, Phys. Rev., 178, No. 3, 1358 (1969).ADSCrossRefGoogle Scholar
  4. 4.
    W. J. Scouler, Phys. Rev., 178, No. 3, 1353 (1969).ADSCrossRefGoogle Scholar
  5. 5.
    D. Mc. Williams and D. W. Lynch, Phys. Rev., 53, No. 2, 298 (1963).Google Scholar
  6. 6.
    S. G. Kroitoru and V. V. Sobolev, Neorg. Mater., 2, No. 2, 50 (1966).Google Scholar
  7. 7.
    V. V. Sobolev, V. I. Donetskikh, E. B. Sokolov, and L. A. Roiter, Fiz. Tverd. Tela, 12, No. 10, 2687 (1970).Google Scholar
  8. 8.
    V. V. Sobolev, Phys. Stat. Sol. B, 49, 209 (1972).CrossRefGoogle Scholar
  9. 9.
    F. Aymerich and G. Mula, Phys. Stat. Sol., 42, 697 (1970).ADSCrossRefGoogle Scholar
  10. 10.
    X. J. Tan, W. Liu, H. J. Liu, et al., Phys. Rev. B, 85, 205212 (2012).ADSCrossRefGoogle Scholar
  11. 11.
    J. J. Pulikkotil, D. J. Singh, S. Auluck, et al., Phys. Rev. B, 86, No. 15, 1555204 (2012).CrossRefGoogle Scholar
  12. 12.
    K. Kutorasinski, J. Tobola, and S. Kaprzyk, Phys. Rev. B, 87, 195205 (2013).ADSCrossRefGoogle Scholar
  13. 13.
    J. Bourgeois, J. Tobola, B. Wiendlocha, et al., Func. Mat. Lett. B, 6, No. 5, 1340005 (2013).CrossRefGoogle Scholar
  14. 14.
    A. Reifer, F. Fuchs, C. Rodl, et al., Phys. Rev. B, 84, No. 7, 075218 (2011).ADSCrossRefGoogle Scholar
  15. 15.
    V.Val. Sobolev and V. V. Sobolev, Semicond. Semimet., 79, 201 (2004).CrossRefGoogle Scholar
  16. 16.
    V. V. Sobolev, Optical Properties and Electronic Structure of Non-Metals. II. Modeling of Integral Spectra by Elementary Bands [in Russian], Computer Research Institute, Moscow, Izhevsk (2012).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Kalashnikov Izhevsk State Technical UniversityIzhevskRussia
  2. 2.Udmurt State UniversityIzhevskRussia

Personalised recommendations