Parameters of a Complex Structure of Optical Functions of Dimagnesium Stannide
- 5 Downloads
The spectra of sixteen optical functions of Mg2Sn crystal are determined at 77 K in the range 1–11 eV. The calculations were performed using known experimental reflection spectra R(E), software packages created on the basis of the Kramers–Kronig relations, and analytical formulas for the communication between optical functions. Their main peculiarities and general regularities have been established. The integral spectra of the imaginary part of the dielectric constant ε2(E) are decomposed into elementary components in the range from 2 to 5.5 eV using an improved nonparametric method of combined Argand diagrams taking into account the effective number of valence electrons participating in the formation of individual bands. The energies of maxima and the strengths of oscillators of elementary components of the transition bands are determined and their assumed nature and localization are proposed on the basis of the data of well-known theoretical calculations.
Keywords
dimagnesium stannide optical function maximum shoulder interband transition exciton oscillator strength dielectric constant volume and surface energy losses Argand diagram improved methodPreview
Unable to display preview. Download preview PDF.
References
- 1.Wei Liu, Xiaojian Tan, Kang Yin, et al., Phys. Rev. Lett., 108, 166601 (2012).ADSCrossRefGoogle Scholar
- 2.O. Benhalal, A. Chahed, S. Kaksari, et al., Phys. Stat. Sol. B, 242, No. 10,. 2022 (2005).ADSCrossRefGoogle Scholar
- 3.M. Y. Au-Yang and L. Cohen Marvin, Phys. Rev., 178, No. 3, 1358 (1969).ADSCrossRefGoogle Scholar
- 4.W. J. Scouler, Phys. Rev., 178, No. 3, 1353 (1969).ADSCrossRefGoogle Scholar
- 5.D. Mc. Williams and D. W. Lynch, Phys. Rev., 53, No. 2, 298 (1963).Google Scholar
- 6.S. G. Kroitoru and V. V. Sobolev, Neorg. Mater., 2, No. 2, 50 (1966).Google Scholar
- 7.V. V. Sobolev, V. I. Donetskikh, E. B. Sokolov, and L. A. Roiter, Fiz. Tverd. Tela, 12, No. 10, 2687 (1970).Google Scholar
- 8.V. V. Sobolev, Phys. Stat. Sol. B, 49, 209 (1972).CrossRefGoogle Scholar
- 9.F. Aymerich and G. Mula, Phys. Stat. Sol., 42, 697 (1970).ADSCrossRefGoogle Scholar
- 10.X. J. Tan, W. Liu, H. J. Liu, et al., Phys. Rev. B, 85, 205212 (2012).ADSCrossRefGoogle Scholar
- 11.J. J. Pulikkotil, D. J. Singh, S. Auluck, et al., Phys. Rev. B, 86, No. 15, 1555204 (2012).CrossRefGoogle Scholar
- 12.K. Kutorasinski, J. Tobola, and S. Kaprzyk, Phys. Rev. B, 87, 195205 (2013).ADSCrossRefGoogle Scholar
- 13.J. Bourgeois, J. Tobola, B. Wiendlocha, et al., Func. Mat. Lett. B, 6, No. 5, 1340005 (2013).CrossRefGoogle Scholar
- 14.A. Reifer, F. Fuchs, C. Rodl, et al., Phys. Rev. B, 84, No. 7, 075218 (2011).ADSCrossRefGoogle Scholar
- 15.V.Val. Sobolev and V. V. Sobolev, Semicond. Semimet., 79, 201 (2004).CrossRefGoogle Scholar
- 16.V. V. Sobolev, Optical Properties and Electronic Structure of Non-Metals. II. Modeling of Integral Spectra by Elementary Bands [in Russian], Computer Research Institute, Moscow, Izhevsk (2012).Google Scholar