Advertisement

Cosmological and Quantum Solutions of the Navier–Stokes Equations

  • V. V. LasukovEmail author
Article
  • 5 Downloads

It is shown that the vector Navier–Stokes equation has a variety of quantum solutions, so the scope of this equation is not limited to the field of classical Newtonian physics, but also includes quantum physics. On this basis, it is shown that the homogeneous quantum velocity is globally defined at all moments in time, is a globally smooth and bounded function, which falls exponentially, and that the kinetic energy is also globally bounded. Its quantum solutions do not depend on the Planck constant, which is instead automatically replaced in the Navier–Stokes equation by its hydrodynamic analog \( \tilde{h}=2 mD>>\mathrm{\hslash}. \) The Navier–Stokes equation gives a deterministic description of the dynamics of a fluid both with respect to the wave function and with respect to velocities. It is shown that taking relativistic effects into account, the Navier–Stokes equation can have a physically meaningful, classical, globally smooth solution of Hubble type, which modifies the isotropic energy-dominance condition, eliminates the cosmological singularity, and accords with the observational data indicating that the Hubble parameter increases with time. The fine structure of the mathematical constants can contain information about interactions of matter. This fact can be used to solve problems on information loss in black holes.

Keywords

Navier–Stokes equation quantum solutions exotic atom in hydrodynamics cosmological singularity the Sixth Millennium Prize Problem 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. V. Lasukov and T. V. Lasukova, Russ. Phys. J., 57, No. 4, 490–497 (2014).CrossRefGoogle Scholar
  2. 2.
    V. V. Lasukov, Int. J. Geometric Methods Mod. Phys., 13, 1650020 (2016).ADSMathSciNetCrossRefGoogle Scholar
  3. 3.
    V. V. Lasukov, Russ. Phys. J., 55, No. 10, 1157–1168 (2012).MathSciNetCrossRefGoogle Scholar
  4. 4.
    M. A. Grabovskii, A. B. Mlodzeevskii, et al., Lecture Demonstrations in Physics [in Russian], Nauka, Moscow (1972).Google Scholar
  5. 5.
    V. V. Lasukov, Russ. Phys. J., 45, No. 2, 133–136 (2002).MathSciNetCrossRefGoogle Scholar
  6. 6.
    R. Penrose, Phys. Rev. Lett., 14, 57 (1965).ADSMathSciNetCrossRefGoogle Scholar
  7. 7.
    V. V. Lasukov and M. O. Abdramashitova, Russ. Phys. J., 61, No. 3, 566–578 (2018).CrossRefGoogle Scholar
  8. 8.
    V. G. Bagrov, V. V. Belov, V. N. Zadorozhnyi, and A. Yu. Trifonov, Methods of Mathematical Physics [in Russian], Publishing House of Scientific and Тechnology Literature, Tomsk (2002).Google Scholar
  9. 9.
    O. A. Ladyzhenskaya, Usp. Mat. Nauk, 58, No. 2, 45–78 (2003).CrossRefGoogle Scholar
  10. 10.
    A. N. Kolmogorov, Izv. Akad. Nauk SSSR, 6, No. 1, 56–58 (1942).Google Scholar
  11. 11.
    D. S. DeWitt, Phys. Rev. D, 160, 1113 (1967).ADSCrossRefGoogle Scholar
  12. 12.
    D. S. DeWitt, Phys. Rev. D, 162, 1195 (1967).ADSCrossRefGoogle Scholar
  13. 13.
    J. B. Hartle and S. W. Hawking, Phys. Rev., 28, 2960 (1983).ADSMathSciNetGoogle Scholar
  14. 14.
    A. Vilenkin, Phys. Lett. B, 117, 25 (1982).ADSMathSciNetCrossRefGoogle Scholar
  15. 15.
    A. D. Linde, Phys. Lett. B, 129,177 (1983).ADSCrossRefGoogle Scholar
  16. 16.
    A. D. Linde, Phys. Lett. B, 108, 389 (1982).ADSCrossRefGoogle Scholar
  17. 17.
    A. A. Starobinsky, Phys. Lett. B, 91, 99 (1967).ADSCrossRefGoogle Scholar
  18. 18.
    É. B. Gliner, Usp. Fiz. Nauk, 172, 221 (2002).CrossRefGoogle Scholar
  19. 19.
    É. B. Gliner, Zh. Eksp. Teor. Fiz., 49, 342 (1965).Google Scholar
  20. 20.
    I. G. Dymnikova, Phys. Lett. B, 472, 33 (2000).ADSMathSciNetCrossRefGoogle Scholar
  21. 21.
    I. G. Dymnikova, Class. Quantum Grav., 21, 4417 (2004).ADSCrossRefGoogle Scholar
  22. 22.
    I. G. Dymnikova, Class. Quantum Grav., 32, 165015 (2015).ADSCrossRefGoogle Scholar
  23. 23.
    I. G. Dymnikova, Class. Quantum Grav., 33, 145010 (2016).ADSMathSciNetCrossRefGoogle Scholar
  24. 24.
    I. G. Dymnikova, Gen. Rel. Grav., 24, 235 (1992).ADSCrossRefGoogle Scholar
  25. 25.
    I. G. Dymnikova, Int. J. Mod. Phys., 5, 529 (1996).ADSCrossRefGoogle Scholar
  26. 26.
    C. W. Misner and J. A. Wheeler, Ann. Phys., 2, 525 (1957).ADSCrossRefGoogle Scholar
  27. 27.
    J. A. Wheeler, Ann. Phys., 2, 604–614 (1957).ADSCrossRefGoogle Scholar
  28. 28.
    B. L. Al’tshuler and A. O. Barvinskii, Usp. Fiz. Nauk, 166, 46 (1996).Google Scholar
  29. 29.
    A. D. Linde, Elementary Particle Physics and Inflation Cosmology [in Russian], Nauka, Moscow (1990).CrossRefGoogle Scholar
  30. 30.
    V. A. Rubakov and D. S. Gorbunov, Introduction to the Theory of the Early Universe: Hot Big Bang Theory, World Scientific Publishing Company, Singapore (2011).zbMATHGoogle Scholar
  31. 31.
    D. S. Gorbunov and V. A. Rubakov, Introduction to the Theory of the Early Universe: Cosmological Perturbations and Inflationary Theory, World Scientific Publishing Company, Singapore (2011).CrossRefzbMATHGoogle Scholar
  32. 32.
    V. A. Rubakov, Teor. Mat. Fiz., 149, 409 (2006).CrossRefGoogle Scholar
  33. 33.
    V. N. Lukash and V. A. Rubakov, Usp. Fiz. Nauk, 178, 301 (2008).CrossRefGoogle Scholar
  34. 34.
    V. A. Rubakov, Usp. Fiz. Nauk, 177, 407 (2007).CrossRefGoogle Scholar
  35. 35.
    V. A. Rubakov, Usp. Fiz. Nauk, 171, 913 (2001).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.National Research Tomsk Polytechnic UniversityTomskRussia

Personalised recommendations