Advertisement

Russian Physics Journal

, Volume 62, Issue 4, pp 569–575 | Cite as

Quantum-Chemical Study of the Influence of Substitution on Anti-Virus Activity of Hydroxyl Substituted Benzaldehydes and Related Compounds

  • O. K. BazylEmail author
  • V. Ya. Artyukhov
  • G. V. Mayer
  • G. B. Tolstorozhev
  • M. V. Belkov
  • O. I. Shadyro
OPTICS AND SPECTROSCOPY
  • 5 Downloads

Using the wave functions of the quantum chemical INDO method, the molecular electrostatic potential (MESP) of hydroxyl substituted benzaldehydes and related compounds exhibiting the ability to inhibit the reproduction of the herpes simplex virus type I has been calculated. It has been established that the degree of biological activity correlates not only with the magnitude of the proton-acceptor capacity of the substituted, but also with the geometry of biologically active molecules. The correspondence between the MESP values of hydroxyl groups and the effectiveness of the inhibitory ability of the investigated substitutions has been established.

Keywords

substituted benzaldehydes quantum chemical calculations of biomolecules molecular electrostatic potential (MESP) anti-virus activity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. Peltari and E. Karhumaki, J. Langshau, et al., Z. Naturforsch., 62, 487–497 (2007).CrossRefGoogle Scholar
  2. 2.
    N. I. Baram, A. I. Ismailov, Kh. L. Ziyaev, et al., Chem. Natur. Comp., 40, 199–205 (2004).CrossRefGoogle Scholar
  3. 3.
    O. I. Shadyro, V. L. Sorokin, G. A. Ksendzova, et al., Khim.-Farm. Zh., 50, 20–22 (2016).Google Scholar
  4. 4.
    O. K. Bazyl, V. Ya. Artyukhov, G. V. Mayer, et al., Zh. Prikl. Spektrosk., 79, 701–706 (2012).Google Scholar
  5. 5.
    O. K. Bazyl, V. Ya. Artyukhov, G. V. Mayer, et al., Opt. Spektrosk., 107, 596–606 (2009).Google Scholar
  6. 6.
    E. Scroco and J. Tomasi, Adv. Quant. Chem., 11, 115–193 (1978).CrossRefGoogle Scholar
  7. 7.
    V. Ya. Artyukhov and A. I. Galeeva, Sov. Phys. J., 29, No. 11, 949–952 (1986).CrossRefGoogle Scholar
  8. 8.
    G. V. Mayer, V. G. Plotnikov, and V. A. Artyukhov, Russ. Phys. J., 59, No. 4, 513–524 (2016); DOI:  https://doi.org/10.1007/s11182-016-0801-0.CrossRefGoogle Scholar
  9. 9.
    A. I. Kitaigorodskii, P. M. Zorkii, and V. K. Belskii, Structure of an Organic Substance. Data of Structural Research. 1971–1973 [in Russian], Nauka, Moscow (1982).Google Scholar
  10. 10.
    http:///www.cambridgesoft.comGoogle Scholar
  11. 11.
    D. W. Brown, A. J. Floyd, and M. J. Sainsburi, Organic Spectroscopy [Russian translation], Mir, Moscow (1992).Google Scholar
  12. 12.
    E. S. Stern and C. J. Timmons, Electronic Absorption Spectroscopy in Organic Chemistry [Russian translation], Mir, Moscow (1975).Google Scholar
  13. 13.
    R. N. Nurmukhametov, Absorption and Luminescence of Aromatic Compounds [in Russian], Khimiya, Moscow (1971).Google Scholar
  14. 14.
    G. B. Tolstorozhev, I. V. Skornyakov, M. V. Belkov, et al., Opt. Spektrosk., 113, 202–207 (2012).CrossRefGoogle Scholar
  15. 15.
    B. M. Uzhinov and M. N. Khimich, Usp. Khim., 80, 581–604 (2011).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • O. K. Bazyl
    • 1
    Email author
  • V. Ya. Artyukhov
    • 1
  • G. V. Mayer
    • 1
  • G. B. Tolstorozhev
    • 2
  • M. V. Belkov
    • 2
  • O. I. Shadyro
    • 3
  1. 1.National Research Tomsk State UniversityTomskRussia
  2. 2.B. I. Stepanov Institute of Physics of the National Academy of Sciences of BelarusMinskBelarus
  3. 3.Belarussian State UniversityMinskBelarus

Personalised recommendations