Plasma Generation in a Pulsed Mode of a Non-Self-Sustained Arc Discharge with a Hybrid Hot-and-hollow Cathode

  • V. V. DenisovEmail author
  • Yu. Kh. Akhmadeev
  • N. N. Koval
  • S. S. Kovalskii
  • N. N. Pedin
  • V. V. Yakovlev

The results of investigation of pulsed burning modes of a non-self-sustained arc discharge with a combined hot-and-hollow cathode are presented. The principal discharge characteristics are measured at the currents up to 350 A and discharge burning voltages up to 200 V within the working pressure range 0.2–1 Pa. It is shown that an increase in the working pressure gives rise to an increase in the discharge current as a result of gas amplification, resulting from an improvement in the processes of fast electron energy utilization during gas ionization. The maximum resulting discharge current in a nitrogen atmosphere at a pressure of 0.8 Pa is found to be 550 A at the discharge burning voltage up to 200 V and the maximum pulsed power up to 80 kV. The concentration of plasma in the center of the ≈0.2 m3 chamber is found to be about 4·1017 m–3 at the density of the ion current from plasma approximately 6.5 mA/cm2 and the discharge pulsed power 18 kW.


non-self-sustained arc discharge low pressure hot cathode pulsed burning mode current-voltage characteristics 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. Conrads and M. Schmidt, Plasma Sources Sci. Technol., No. 9, 441–454 (2000).Google Scholar
  2. 2.
    A. Anders, Surf. Coat. Technol., 183, 301–311 (2004).CrossRefGoogle Scholar
  3. 3.
    E. V. Berlin, N. N. Koval, and L. A. Seidman, Plasma Chemical and Heat Treatment of the Surfaces of Steel Parts [in Russian], Tekhnosfera, Moscow (2012).Google Scholar
  4. 4.
    P. M. Shchanin, N. N. Koval, I. M. Goncharenko, and S. V. Grigoriev, Zh. Fiz. Khim. Obr. Mater., No. 3, 16–19 (2001).Google Scholar
  5. 5.
    Yг. D. Korolev and N. N. Koval, J. Phys. D: Appl. Phys., 51, No. 32, 323001 (2018).CrossRefGoogle Scholar
  6. 6.
    L. G. Vintizenko, S. V. Grigoriev, N. N. Koval, et al., Russ. Phys. J., 44, No. 9, 28 – 34 (2001).CrossRefGoogle Scholar
  7. 7.
    N. N. Koval, Yu. F. Ivanov, I. V. Lopatin, et al., Russ. J. Gen. Chem., 85, No. 5, 1326–1338 (2015).CrossRefGoogle Scholar
  8. 8.
    I. V. Lopatin, Yu. Kh. Akhmadeev, and N. N. Koval, Rev. Sci. Instrum., 86, 103301 (2015).ADSCrossRefGoogle Scholar
  9. 9.
    S. S. Kovalskii, V. V. Denisov,N. N. Koval, and I. V. Lopatin, Izv. Vyssh. Uchebn. Zaved. Fiz., 57, No. 11/3, 78–81 (2014).Google Scholar
  10. 10.
    Yu. Kh. Akhmadeev,V. V. Denisov, N. N. Koval, et al., Plasma Phys. Rep., 43, No. 1, 67–74 (2017).ADSCrossRefGoogle Scholar
  11. 11.
    K. N. Ulyanov, J. High Temp., 37, No. 3, 363–373 (1999).Google Scholar
  12. 12.
    I. V. Lopatin, P. M. Shchanin, Yu. Kh. Akhmadeev, et al., Plasma Phys. Rep., 38, No. 7, 639–643 (2012).CrossRefGoogle Scholar
  13. 13.
    K. W. Ehlers and K. N. Leung, Rev. Sci. Instrum., 50, No. 3, 356–361 (1979).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • V. V. Denisov
    • 1
    Email author
  • Yu. Kh. Akhmadeev
    • 1
  • N. N. Koval
    • 1
  • S. S. Kovalskii
    • 1
  • N. N. Pedin
    • 1
  • V. V. Yakovlev
    • 1
  1. 1.Institute of High Current Electronics of the Siberian Branch of the Russian Academy of SciencesTomskRussia

Personalised recommendations