Special Features of Functional Properties of Heterophase High-Strength Ni50.2Ti37.3Hf12.5 Polycrystals and Single Crystals

  • A. I. TagiltsevEmail author
  • N. Yu. Surikov
  • E. Yu. Panchenko
  • Yu. I. Chumlyakov
  • I. Karaman

Stress-induced B2–B19' martensitic transformations (MTs) in Ni50.2Ti37.3Hf12.5 (at.%) alloy aged at 773 K, 3 h are studied. Single crystals have lower (by 100 K) transformation temperatures (TTs) in comparison with polycrystals. Aging of single crystals results in precipitation of H- and H'-phase particles with sizes up to 15 nm thereby leading to significant strengthening of the B2 phase with σcr(B2) = 1540 MPa and manifestation of superelasticity (SE) in a temperature interval of 90 K. Low strength properties of the B2 phase with σcr(B2) = 950 MPa in polycrystals are caused by precipitation of only H-phase particles. This leads to the absence of SE. Additional martensite aging of polycrystals enhances the strength properties of the B2 phase by a factor of 1.5 up to 1450 MPa, thereby leading to the appearance of the high-temperature SE in a wide temperature interval of 110 K. This state is characterized by enhanced TTs, reduced temperature intervals of stress-induced MT, and maximal reversible strain value up to 2.0%.


superelasticity thermoelastic martensitic transformations single crystals thermal treatment 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. Ma, I. Karaman, and R. D. Noebe, Int. Mater. Rev., 55, No. 5, 257–315 (2010).CrossRefGoogle Scholar
  2. 2.
    J. Frenzel, A. Wieczorek, I. Opahle, et al., Acta Mater., 90, 213–231 (2015).CrossRefGoogle Scholar
  3. 3.
    H. E. Karaca, S. M. Saghaian, G. Ded, et al., Acta Mater., 61, 7422–7431 (2013).CrossRefGoogle Scholar
  4. 4.
    F. Yang, D. R. Coughlin, P. J. Phillips, et al., Acta Mater., 61, 3335–3346 (2013).CrossRefGoogle Scholar
  5. 5.
    D. R. Coughlin, L. Casalena, F. Yang, et al., J Mater Sci., 51, 766–778 (2016).ADSCrossRefGoogle Scholar
  6. 6.
    T. Umale, D. Salas, B. Tomes, et al., Scripta Mater., 161, 78–83 (2019).CrossRefGoogle Scholar
  7. 7.
    S. M. Saghaian, H. E. Karaca, H. Tobe, et al., Acta Mater., 87, 128–141 (2015).CrossRefGoogle Scholar
  8. 8.
    K. Otsuka, Shape Memory Materials, Cambridge University Press (1998).Google Scholar
  9. 9.
    Yu. I. Chumlyakov, I. V. Kireeva, E. Yu. Panchenko, and E. E. Timofeeva, Mechanisms of Thermoelastic Martensitic Transformations into High-Strength Single Crystals of Iron and Titanium Nickelide Based Alloys [in Russian], Publishing House of Scientific and Technology Literature, Tomsk (2016).Google Scholar
  10. 10.
    A. Evirgen, I. Karaman, R. Santamarta, et al., Acta Mater., 83, 48–60 (2015).CrossRefGoogle Scholar
  11. 11.
    B. Amin-Ahmadi, T. Gallmeyer, J. G. Pauza, et al., Scripta Mater., 147, 11–15 (2018).CrossRefGoogle Scholar
  12. 12.
    Y. I. Chumlyakov, I. V. Kireeva, E. Y. Panchenko, et al., in: Shape Memory Alloys: Properties, Technologies, Opportunities, Trans Tech Publications Ltd, Switzerland (2015), pp. 108–174.Google Scholar
  13. 13.
    K. Tsuchiya, K. Tateyama, K. Sugino, and K. Marukawa, Scripta Metall., 32, No. 2, 259–264 (1995).CrossRefGoogle Scholar
  14. 14.
    D. R. Coughlin, P. J. Phillips, G. S. Bigelow, et al., Scripta Mater., 67, 112–115, (2012).CrossRefGoogle Scholar
  15. 15.
    E. Yu. Panchenko, E. E. Timofeeva, N. G. Larchenkova, et al., Mater. Sci. Eng. A, 706, 95–103 (2017).CrossRefGoogle Scholar
  16. 16.
    L. Patriarca and H. Sehitoglu, Scripta Mater., 101, 12–15 (2015).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • A. I. Tagiltsev
    • 1
    Email author
  • N. Yu. Surikov
    • 1
  • E. Yu. Panchenko
    • 1
  • Yu. I. Chumlyakov
    • 1
  • I. Karaman
    • 2
  1. 1.V. D. Kuznetsov Physical-Technical Institute at Tomsk State UniversityTomskRussia
  2. 2.Texas A&M UniversityCollege StationUSA

Personalised recommendations