Advertisement

The Influence of Grain Size on Low-Stability Pre-Transitional Structural-Phase States of NiAl Intermetallide

  • A. I. PotekaevEmail author
  • A. A. Chaplygina
  • P. A. Chaplygin
  • M. D. Starostenkov
  • V. V. Kulagina
  • A. A. Klopotov
  • L. S. Grinkevich
CONDENSED-STATE PHYSICS
  • 1 Downloads

Using the Monte Carlo method, the influence of grain size (model cell dimensions) on the peculiarities of pretransitional, low-stability structural-phase states of NiAl intermetallide in the region of structural-phase transformations is investigated during thermal cycling (heating and cooling). An analysis of the temperature dependences of the long-range order parameters shows that during heating the maximal long-range order is observed in an alloy with the maximal grain size, while the minimal – in the alloy with the smallest grain size. In order to achieve disordering of the alloy by increasing its grain size, it has to be increasingly overheated. Under cooling, long-range order primarily appears in a fine-grained alloy. The larger the grain size, the wider the temperature interval of the structural-phase transformation. The peculiarities of formation of the structural-phase states in the course of cooling as a function of the grain size (model cell dimensions) indicate that the first ordered regions appear in the fine-grained alloy. As the grain size increases, the temperature at which long-range order appears becomes lower, in other words, a still higher overcooling is required for the system's atomically-ordered states to be formed.

Keywords

intermetallide low-stability pre-transitional states atomic ordering structural defects 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. V. Kositsyn and I. I. Kositsyna, Usp. Fiz. Met., 9, 195–258 (2008).CrossRefGoogle Scholar
  2. 2.
    A. I. Potekaev, M. D. Starostenkov, and V. V. Kulagina, The Influence of Point and Planar Defects on Structural-Phase Transformations in the Pretransitional Low-Stability Region of Metallic Systems (Ed. A. I. Potekaev) [in Russian], NTL Publ., Tomsk (2014).Google Scholar
  3. 3.
    N. A. Koneva, L. I. Trishkina, A. I. Potekaev, and E. V. Kozlov, Structural-Phase Transformations in Low-Stability States of Metallic Systems during Thermal-Force Interaction [in Russian] (Ed. A. I. Potekaev), NTL Publ., Tomsk (2015).Google Scholar
  4. 4.
    P. A. Chaplygin, M. D. Starostenkov, A. I. Potekaev, et al., Russ. Phys. J., 58, No. 4, 485–491 (2015).CrossRefGoogle Scholar
  5. 5.
    A. A. Chaplygina, P. A. Chaplygin, M. D. Starostenkov, et al., Fund. Probl. Sovr. Materialoved., 13, No. 3, 403–407 (2016).Google Scholar
  6. 6.
    A. A. Chaplygina, A. I. Potekaev, P. A. Chaplygin, et al., Russ. Phys. J., 59, No. 5, 605–611 (2016).CrossRefGoogle Scholar
  7. 7.
    V. V. Kulagina, A. A. Chaplygina, L. A. Popova, et al., Russ. Phys. J., 55, No. 7, 814–824 (2012).CrossRefGoogle Scholar
  8. 8.
    A. A. Klopotov, A. I. Potekaev, E. V. Kozlov, and V. V. Kulagina, Russ. Phys. J., 54, No. 9, 1012–1023 (2011).CrossRefGoogle Scholar
  9. 9.
    A. I. Potekaev, A. A. Chaplygina, V. V. Kulagina, et al., Russ. Phys. J., 60, No. 2, 215–226 (2017).CrossRefGoogle Scholar
  10. 10.
    A. A. Klopotov, L. I. Trishkina, T. N. Markova, et al., Bull. RAS. Physics, 80, No. 11, 1576–1578 (2016).Google Scholar
  11. 11.
    A. A. Chaplygina, A. I. Potekaev, P. A. Chaplygin, et al., Fund. Probl. Sovr. Materialoved., 13, No. 2, 155–161 (2016).Google Scholar
  12. 12.
    A. I. Potekaev, A. A. Chaplygina, V. V. Kulagina,. et al., Russ. Phys. J., 59, No. 10, 1532–1542 (2017).CrossRefGoogle Scholar
  13. 13.
    G. M. Poletaev, A. I. Potekaev, M. D. Starostenkov, et al., Russ. Phys. J., 58, No. 1, 42–47 (2015).CrossRefGoogle Scholar
  14. 14.
    A. I. Potekaev, Морозов М. М., A. A. Klopotov, et al., Izvestiya VUZov. Chern Metallurg., 58, No. 8, 589–596 (2015).Google Scholar
  15. 15.
    A. I. Potekaev, A. A. Chaplygina, P. A. Chaplygin, et al., Russ. Phys. J., 60, No. 9, 1577–1587 (2018).CrossRefGoogle Scholar
  16. 16.
    A. I. Potekaev, A. A. Chaplygina, P. A. Chaplygin, et al., Russ. Phys. J., 60, No. 10, 1775–1785 (2018).CrossRefGoogle Scholar
  17. 17.
    A. I. Potekaev, A. A. Chaplygina, P. A. Chaplygin, et al., Russ. Phys. J., 61, No. 3, 412–427 (2018).CrossRefGoogle Scholar
  18. 18.
    A. I. Potekaev, A. A. Chaplygina, P. A. Chaplygin, et al., Russ. Phys. J., 62, No. 1, 119–126 (2019).CrossRefGoogle Scholar
  19. 19.
    V. I. Iveronova and A. A. Kanzelson, Short-Range Order in Solid Solutions [in Russian], Nauka, Moscow (1977).Google Scholar
  20. 20.
    M. A. Krivoglaz and A. A. Smirnov, The Theory of Ordering Alloys, Fizmatgiz, Moscow (1958).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • A. I. Potekaev
    • 1
    • 2
    Email author
  • A. A. Chaplygina
    • 3
  • P. A. Chaplygin
    • 3
  • M. D. Starostenkov
    • 3
  • V. V. Kulagina
    • 2
    • 4
  • A. A. Klopotov
    • 2
    • 5
  • L. S. Grinkevich
    • 1
  1. 1.National Research Tomsk State UniversityTomskRussia
  2. 2.V. D. Kuznetsov Physical-Technical Institute at Tomsk State UniversityTomskRussia
  3. 3.Polzunov State Technical UniversityBarnaulRussia
  4. 4.Siberin State Medical UniversityTomskRussia
  5. 5.Tomsk State Architecture and Building UniversityTomskRussia

Personalised recommendations