Advertisement

Adsorption and Diffusion of Atoms of Groups 1, 2 and 13 Elements on Antimony Telluride Surface

  • A. G. RyabishchenkovaEmail author
  • V. M. Kuznetsov
Article
  • 1 Downloads

The paper presents ab initio calculations of the adsorption and diffusion of atoms of groups 1, 2 and 13 elements on the (0001) surface of antimony telluride (Sb2Te3) topological insulator. It is shown that most of the investigated adatoms possess minimum energy when occupying the face-centered cubic (FCC) hollow site. Exceptions are presented only for beryllium, boron, indium and thallium atoms which adsorb at the hexagonal close-packed (HCP) hollow site. The adatom diffusion on Sb2Te3 (0001) surface occurs in two stages, i.e. adatoms hop from an FCC site to an HCP site and vice versa. For beryllium, boron, indium and thallium atoms the order of these hops is modified because the HCP hollow site is more favorable location in terms of the absorption energy. The energy barriers are determined for hops on Sb2Te3 (0001) surface, and the obtained hop frquencies are used to analytically calculate the diffusion lengths. The diffusion activation temperature is determined, when the adatom passes through the interatomic spacing of 2.5 Å in one minute. It is found that the highest (165 K) activation temperature belongs to beryllium, while the lowest (39 K) corresponds to cesium.

Keywords

topological insulator density functional theory adsorption diffusion charge transport 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Hasan and C. Kane, Rev. Mod. Phys., No. 82, 3045 (2010).Google Scholar
  2. 2.
    C. Pauly, G. Bihlmayer, M. Liebmann, et al., Phys. Rev. B, 86, No. 23, 235106 (2012).ADSCrossRefGoogle Scholar
  3. 3.
    S. Roy, H. L. Meyerheim, A. Ernst, et al., Phys. Rev. Lett., 113, 116802 (2014).ADSCrossRefGoogle Scholar
  4. 4.
    P. Loptien, L. Zhou, J. Wiebe, et al., Phys. Rev. B, 89, 085401 (2014).ADSCrossRefGoogle Scholar
  5. 5.
    M. Bianchi, R. C. Hatch, Z. Li, et al., ACS Nano, 6, No. 8, 7009–7015 (2012).CrossRefGoogle Scholar
  6. 6.
    C. Seibel, H. Maab, M. Ohtaka, et al., Phys. Rev. B, 86, No. 23, 235105 (2012).CrossRefGoogle Scholar
  7. 7.
    A. G. Ryabishchenkova, M. M. Otrokov, V. M. Kuznetsov, and E. V. Chulkov, JETP, 121, No. 3, 465–476 (2015).ADSCrossRefGoogle Scholar
  8. 8.
    Z.-H. Zhu, G. Levy, B. Ludbrook, et al., Phys. Rev. Lett., 107, 186405 (2011).ADSCrossRefGoogle Scholar
  9. 9.
    W. Metz and D. Hohlwein, Carbon, 13, No. 1, 84 (1975).CrossRefGoogle Scholar
  10. 10.
    G. Kresse and J. Furthmüller, Phys. Rev. B, 54, 11169 (1996).ADSCrossRefGoogle Scholar
  11. 11.
    G. Kresse and D. Joubert, Phys. Rev. B, 59, 1758 (1999).ADSCrossRefGoogle Scholar
  12. 12.
    H. Sahin and F. M. Peeters, Phys. Rev. B, 87, 085423 (2013).ADSCrossRefGoogle Scholar
  13. 13.
    R. F. W. Bader, Encyclopedia of Computational Chemistry. John Wiley & Sons, Ltd. (2002).Google Scholar
  14. 14.
    H. Jonsson, G. Mills, and K. W. Jacobsen, Classical and Quantum Dynamics in Condensed Phase Simulations. World Scientific (1998), 385 p.Google Scholar
  15. 15.
    M. A. Gosalves, M. M. Otrokov, N. Ferrando, et al., Phys. Rev. B, 93, 075429 (2016).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.National Research Tomsk State UniversityTomskRussia

Personalised recommendations