Advertisement

Restriction of a Number of Levels of Dimensional Quantization in Elements of Nanoelectronics

  • V. N. DavydovEmail author
  • O. F. Zadorozhny
  • O. A. Karankevich
PHYSICS OF SEMICONDUCTORS AND DIELECTRICS

Realization of a criterion of dimensional quantization in quantum wells of various profiles is considered. It is established that there is the limit number of the discrete state of a free charge carrier in the well, above which the criterion of dimensional quantization is not fulfilled. It is shown that in quantum wells of rectangular and triangular profiles, the number of levels of dimensional quantization cannot exceed two or three. The result obtained is applicable to quantum wells, quantum wires, and quantum dots.

Keywords

rectangular quantum well triangular quantum well de Broil wavelength levels of dimensional quantization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Zh. I. Alferov, Fiz. Tekh. Poluprovodn., 32, No. 1, 3–18 (1998).Google Scholar
  2. 2.
    E. F. Schubert, Light-Emitting Diodes, Cambridge (2006).Google Scholar
  3. 3.
    V. M. Roshchin, Techology of Materials for Micro- Opto- and Nanoelectronics [in Russian], BINOM Lab. Znanii, Moscow (2010).Google Scholar
  4. 4.
    Nitride Semiconductor Devices. Principle and Simulation, ed. by J. Piprek, Wiley – VCH Verlag GmbH and Co KGaA, (2007).Google Scholar
  5. 5.
    G. G. Shishkin and I. M. Ageev, Nanoelectronics: Elements, Instruments, Devices [in Russian], BINOM Lab. Znanii, Moscow (2011).Google Scholar
  6. 6.
    A. E. Yunovich, Svetotekh., No. 6, 13–17 (2007).Google Scholar
  7. 7.
    Optoelectronic Devices: Advanced Simulation and Analysis, ed. by J. Piprek, Springer, N. Y. (2005).Google Scholar
  8. 8.
    J. M. Matinez-Duart, R. J. Martin-Palma, and F. Agullo-Rueda. Nanotechnology for Microelectronics and Optoelectronics, Elsevier (2006).Google Scholar
  9. 9.
    A. A. Shchuka, Nanoelectronics [in Russian], VKhV- Petersburg, St.-Petersburg (2006).Google Scholar
  10. 10.
    O. N. Ermakov, Applied Optoelectronics [in Russian], Tekhnosfera, Moscow (2004).Google Scholar
  11. 11.
    A. N. Ignatov, N. E. Fadeeva, and V. L. Savinykh, Classic Electronics and Nanoelectronics [in Russian], Flinta, Moscow (2009).Google Scholar
  12. 12.
    N. A. Azarenkov, V. M. Berestnev, A. D. Pogrebnyak. et al., Nanomaterials, Nanocoatings, Nanotechnologies [in Russian], Izd. of V.N. Karazin Kharkov National University, Kharkov (2009).Google Scholar
  13. 13.
    A. F. Kravchenko and V. N. Ovsyuk, Electronic Processes in Low-Dimensional Solid-State Systems [in Russian], Izd. of Novosibirsk University, Novosibirsk (2000).Google Scholar
  14. 14.
    V. E. Borisenko, A. I. Vorob’eva, E. A. Utkina, Nanoelectronics [in Russian], BINOM Lab. Znanii, Moscow (2009).Google Scholar
  15. 15.
    S. A. Fridrikhov and S. M. Movnin, Physical Basics of Electronic Technology [in Russian], Mir, Moscow (1985).Google Scholar
  16. 16.
    V. N. Lozovskii, G. S. Konstantinova, and S. V. Lozovskii, Nanotechnology in Electronics [in Russian], Lan’, St.-Petersburg (2008).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • V. N. Davydov
    • 1
    Email author
  • O. F. Zadorozhny
    • 1
  • O. A. Karankevich
    • 1
  1. 1.Tomsk State University of Control Systems and RadioelectronicsTomskRussia

Personalised recommendations