Advertisement

Numerical Modeling of Overlaps of Visibility Zones of Auroral Imagers from Space Vehicles in the Earth Polar Zones

  • M. A. BanshchikovaEmail author
  • N. A. Popandopulo
Article
  • 1 Downloads

This paper describes a numerical experiment on simulating the visibility zones of auroral imagers placed onboard near-earth space vehicles aimed at detection of overlaps of visibility zones above the north and south poles of the Earth. The appropriate experiment software SEApp based on a simplified numerical model of space vehicle motion is described that enables one to study numerically the motion of two satellites over a given period of time and to predict overlaps of visibility zones of the auroral imagers above the north and south poles of the Earth.

Keywords

space experiment software auroral imager overlap of visibility zones 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. M. Kintner, B. M. Ledvina, and E. R. de Paula, Space Weather, 5, S09003 (2007); DOI:  https://doi.org/10.1029/2006SW000260.
  2. 2.
    E. B. Shume, A. Komjathy, R. B. Langley, et al., Geophys. Res. Lett., 42, 688–696 (2015); DOI:  https://doi.org/10.1002/2014GL062558.ADSCrossRefGoogle Scholar
  3. 3.
    S. Basu, K. M. Groves, Su. Basu, and P. J. Sultan, J. Atmos. Sol.-Terr. Phys., 64, 1745–1754 (2002).Google Scholar
  4. 4.
    M. Feng, Master’s Degree Thesis, Department of Geomagnetics Engineering of University of Calgary (2010); URL: http://www.geomagnetics.ucalgary.ca.
  5. 5.
    V. E. Kunitsyn, E. D. Tereshchenko, E. S. Andreeva, and I. A. Nesterov, Usp. Fiz. Nauk, 180, No. 5, 548–553 (2010).CrossRefGoogle Scholar
  6. 6.
    S. B. Mende, J. Geophys. Res., Space Phys., 121, No. 10, 10623–10637 (2016); DOI: 10.1002/2016/JA022558.Google Scholar
  7. 7.
    S. B. Mende, J. Geophys. Res., Space Phys., 121, No. 10, 10638–10660 (2016); DOI: 10.1002/2016/JA022607.Google Scholar
  8. 8.
    L. L. Cogger, A. Howarth, and A. Yau, Rep. of 2015 CAP Congress, T2-3 Ground-based in situ observations and studies of space environment II (DASP), University of Alberta, Edmonton (2015).Google Scholar
  9. 9.
    Y. Obuchi, T. Sakanoi, A. Yamazaki, et al., Earth, Planets Space, 60, 827–835 (2008).Google Scholar
  10. 10.
    L. Cogger, A. Howarth, A. Yau, et al., Space Sci. Rev., 189, 15–25 (2014); DOI:  https://doi.org/10.1007/s11214-014-0107-x.ADSCrossRefGoogle Scholar
  11. 11.
    V. A. Avdyushev, M. A. Banshchikova, I. N. Chuvashov, and A. K. Kuzmin, in: Abstracts of the European Planetary Science Congress EPSC2017-834-1, Riga (2017); http://www.cosmic-rays.ru/articles/13/2017EPSC.pdf, Poster Report http://www.cosmic-rays.ru/articles/13/2017Riga1.pdf.
  12. 12.
    A. G. Aleksandrova, T. V. Bordovitsyna, and I. N. Chuvashov, Russ. Phys. J., 2017, 60, No. 1, 80–89 (2017).Google Scholar
  13. 13.
    A. K. Kuz’min, A. M. Merzlyi, M. A. Banshchikova, et al., in: Materials of the Fourth Int. Sci.-Tech. Conf. “Actual Problems of Creating Space Systems for Remote Sensing of the Earth,” Moscow (2016), pp. 325–341; http://www.cosmic-rays.ru/articles/13/201702.pdf.
  14. 14.
    A. K. Kuz’min, M. A. Banshchikova, Yu. S. Dobrolenskii, et al., in: Practical Aspects of Heliogeophysics, Moscow (2016), pp. 114–133; http://iki.cosmos.ru/books/2016helioph.pdf.
  15. 15.
    A. K. Kuz’min, M. A. Banshchikova, I. N. Chuvashov, et al., Electromech. Matters. VNIIEM Studies, 158, No. 3, 7–21 (2017); http://www.cosmic-rays.ru/articles/13/201703.pdf.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.National Research Tomsk State UniversityTomskRussia

Personalised recommendations