Advertisement

Investigation of Light Pressure Influence on Dynamics of Near-Earth Objects with Reverse Motion

  • A. G. AleksandrovaEmail author
  • T. V. Bordovitsyna
  • V. B. Aleksandrov
Article

In this paper we consider the joint influence of secular resonances and light pressure on the long-term orbital evolution of objects with reverse motion in the near-Earth space with semimajor axes of orbits from 15000 to 45000 km. The orbital evolution of each object is considered for three values of the area-to-mass ratio of the object: 0.001, 1, and 10 m2/kg.

Keywords

Near-Earth space objects light pressure secular resonances reverse motion 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. G. Aleksandrova, T. V. Bordovitsyna, and I. V. Tomilova, Astron. Vestn., 52, No. 5, 447–462 (2018).Google Scholar
  2. 2.
    A. G. Aleksandrova, T. V. Bordovitsyna, and I. V. Tomilova, Russ. Phys. J., 61, No. 4, 687–693 (2018).CrossRefGoogle Scholar
  3. 3.
    G. E. Cook, Geophys. J. R. Astron. Soc., 6, No. 3, 271–291 (1962).ADSCrossRefGoogle Scholar
  4. 4.
    E. M. Alessi et al., Mon. Not. Roy. Astron. Soc., 473, No. 2, 2407–2414 (2018).ADSCrossRefGoogle Scholar
  5. 5.
    S. Valk, A. Lemaître, and L. Anselmo, Adv. Space Res., 41, 1077–1090 (2008).ADSCrossRefGoogle Scholar
  6. 6.
    A. J. Rosengren and D. J. Scheeres, Adv. Space Res., 52, 1545–1560 (2013).ADSCrossRefGoogle Scholar
  7. 7.
    C. Colombo, C. Lucking, and C. R. McInnes, Acta Astronaut., 81, 137–150 (2012).ADSCrossRefGoogle Scholar
  8. 8.
    É. D. Kuznetsov et al., Astron. Vestn., 46, No. 6, 480–488 (2012).Google Scholar
  9. 9.
    É. D. Kuznetsov, Astron. Vestn., 45, No. 5, 444–457 (2011).Google Scholar
  10. 10.
    A. G. Aleksandrova, T. V. Bordovitsyna, and I. N. Chuvashov, Izv. Vyssh. Uchebn. Zaved., Fiz., 54, No. 6/2, 47–54 (2011).Google Scholar
  11. 11.
    É. D. Kuznetsov, P. E. Zakharova, D. V. Glamazda, and S. O. Kudryavtsev, Astron. Vestn., 48, No. 6, 482–494 (2014).Google Scholar
  12. 12.
    A. G. Aleksandrova, T. V. Bordovitsyna, and I. N. Chuvashov, Russ. Phys. J., 60, No. 1, 80–89 (2017).CrossRefGoogle Scholar
  13. 13.
    A. G. Aleksandrova and I. V. Tomilova, Izv. Vyssh. Uchebn. Zaved. Fiz., 59, No. 10/2, 63–69 (2016).Google Scholar
  14. 14.
    T. V. Bordovitsyna and V. A. Avdyushev, Theory of Motion of Artificial Earth Satellites. Analytical and Numerical Methods [in Russian], Publishing House of Tomsk State University, Tomsk (2016).Google Scholar
  15. 15.
    S. Valk et al., Adv. Space Res., 43, 1509–1526 (2009).ADSCrossRefGoogle Scholar
  16. 16.
    P. M. Cincotta, C. M. Girdano, and C. Simo, Physica D, 182, 151–178 (2003).ADSMathSciNetCrossRefGoogle Scholar
  17. 17.
    T. V. Bordovitsyna, A. G. Aleksandrova, and I. N. Chuvashov, Izv. Vyssh. Uchebn. Zaved. Fiz., 53, No. 8/2, 14–21 (2010).Google Scholar
  18. 18.
    A. G. Aleksandrova, I. N. Chuvashov, and T. V. Bordovitsyna, Izv. Vyssh. Uchebn. Zaved., Fiz. 54, No. 6/2, 39–46 (2011).Google Scholar
  19. 19.
    A. G. Aleksandrova, Investigation of long-term orbital evolution of space debris objects in the geostationary zone, Candidate’s Dissertation in Physical-Mathematical Sciences, Saint Petersburg State University (2012).Google Scholar
  20. 20.
    J. Daquin et al., Celest. Mech. Dyn. Astr., 124, 335–366 (2016).ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • A. G. Aleksandrova
    • 1
    Email author
  • T. V. Bordovitsyna
    • 1
  • V. B. Aleksandrov
    • 1
  1. 1.National Research Tomsk State UniversityTomskRussia

Personalised recommendations