Advertisement

Dispersion of Electromagnetic, Elastic and Diffusion Waves in Crystalline Solids

  • S. O. GladkovEmail author
Article

The paper analyzes the dispersion characteristics of eigen oscillation frequencies of electromagnetic, elastic and diffusion waves. The analysis is based on the general invariant expression of the Lagrange function density in a solid subjected to the elastoplastic deformation with u(r,t) strain vector of its inner points, electromagnetic field potentials A(r,t) and φ(r,t ) , and concentration n(r,t) of diffusing substance with regard to a correlation between these parameters. Owing to the least-action principle, four linear, interconnected differential equations are obtained. Form their solution all the four frequency spectra ωi (k ) are derived, where i=1,2,3,4 and k is the wave vector. It is found that the obtained dispersions are the important part in the quantum case, if taking the interaction between the four components into consideration, when knowledge of the function ωi (k ) is required.

Keywords

dispersion electromagnetic potentials deformation concentration Lagrange function 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. O. Gladkov, Russ. Phys. J., 59, No. 8, 1268–1273 (2016).CrossRefGoogle Scholar
  2. 2.
    J.Z.M. Ziman, Principles of the Theory of Solids [Russian translation], Mir, Moscow (1974).Google Scholar
  3. 3.
    W. S. Gorsky, Phys. Zs. Sowjet., 8, 45, 462 (1935).Google Scholar
  4. 4.
    W. S. Gorsky, Zh. Eksp. Teor. Fiz., 6, 272–284 (1936).Google Scholar
  5. 5.
    V. L. Gurevich, Kinetics of Phonon Systems [Russian translation], Nauka, Moscow (1981).Google Scholar
  6. 6.
    L. D. Landau and E. M. Lifshits, Theory of Eleasticity [in Russian], Vol. 6. Nauka, Moscow (1988).Google Scholar
  7. 7.
    H. W. Lord and Y. A. Shulman, J. Mech. Phys., 15, 299–309 (1967).ADSCrossRefGoogle Scholar
  8. 8.
    W. Nowacki, Bull. Polish Acad. Sci. Ser. Sci. and Technol., 22, 55–64 (1974).Google Scholar
  9. 9.
    W. Nowacki, Engin. Fract. Mech., 8, 261–266 (1976).CrossRefGoogle Scholar
  10. 10.
    J. A. Gawinecki, P. Kacprzyk, and P. Bar-Yoseph, J. Anal. Appl., 19, 121–130 (2000).Google Scholar
  11. 11.
    J. A. Gawinecki and A. Szymaniec, Proc. Appl. Math. Mech., 1, 446–447 (2002).CrossRefGoogle Scholar
  12. 12.
    H. H. Sherief, F. Hamza, and H. Saleh, Intern. J. Eng. Sci., 42, 591–608 (2004).CrossRefGoogle Scholar
  13. 13.
    H. H. Sherief and H. A. Saleh, Int. J. Solids Struct., 42, 4484–4493 (2005).CrossRefGoogle Scholar
  14. 14.
    B. Singh, J., Earth Syst. Sci., 114, No. 2, 159–168 (2005).ADSCrossRefGoogle Scholar
  15. 15.
    B. Singh J., Sound Vibrat., 291, No. 3–5, 764–778 (2006).ADSCrossRefGoogle Scholar
  16. 16.
    M. Aouadi, ZAMP, 57, No. 2, 350–366 (2006).ADSMathSciNetGoogle Scholar
  17. 17.
    M. Aouadi, J. Therm. Stresses, 30, 665–678 (2007).MathSciNetCrossRefGoogle Scholar
  18. 18.
    M. Aouadi, J. Therm. Stresses, 31, 270–285 (2008).CrossRefGoogle Scholar
  19. 19.
    R. Kumar and T. Kansal, Int. J. Solids Struct., 45, 5890–5913 (2008).CrossRefGoogle Scholar
  20. 20.
    R. Kumar and T. Kansal, Mech. Solids, 47, No. 3, 337–356 (2012).ADSCrossRefGoogle Scholar
  21. 21.
    Yu. V. Levinskii and M. P. Lebedev, Doklady Physics, 59, No. 6, 271–274 (2014).ADSCrossRefGoogle Scholar
  22. 22.
    L. D. Landau and E. M. Lifshits, Field Theory [in Russian], Nauka, Moscow (2002), 520 p.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Moscow Aviation Institute (National Research University)MoscowRussia

Personalised recommendations