Advertisement

Qualitative and Numerical Analysis of a Cosmological Model Based on an Asymmetric Scalar Doublet with Minimal Connections. IV. Numerical Modeling and Types of Behavior of the Model

  • Yu. G. Ignat’evEmail author
  • I. A. Kokh
Article

On the basis of a qualitative and numerical analysis of a cosmological model based on an asymmetric scalar doublet of nonlinear, minimally interacting scalar fields – one classical and one phantom, peculiarities of the behavior of the model near zero energy hypersurfaces have been revealed. Numerical models have been constructed, in which the dynamical system has limit cycles on the zero-energy hypersurfaces. Three types of behavior of the cosmological model have been distinguished, configured by the fundamental constants of the scalar fields and the initial conditions. It is shown that over a wide sector of values of the fundamental constants and initial conditions, the cosmological models have a tendency to adhere to the zero-energy hypersurfaces corresponding to 4-dimensional Euclidean space.

Keywords

cosmological model phantom scalar field classical scalar field asymmetric scalar doublet qualitative analysis numerical modeling Euclidean limit cycles 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Yu. G. Ignat’ev and I. A. Kokh, Russ. Phys. J., 61, No. 6, 1079–1092 (2018).Google Scholar
  2. 2.
    Yu. G. Ignat’ev and I. A. Kokh, Russ. Phys. J., 61, No. 9, 1590–1596 (2019).Google Scholar
  3. 3.
    Yu. G. Ignat’ev and I. A. Kokh, Russ. Phys. J., 62, No. 2, 242–251 (2019).Google Scholar
  4. 4.
    I. Ya. Aref'eva, N. V. Bulatov, R. V. Gorbachev, and S. Yu. Vernov, Class. Quantum Grav., 31, 065007 (2014).Google Scholar
  5. 5.
    Yu. Ignat’ev, A. Agathonov, M. Mikhailov, and D. Ignatyev, Astr. Space Sci., 357, 61 (2015).Google Scholar
  6. 6.
    Yurii Ignat’ev, Alexander Agathonov, and Dmitry Ignatyev, arXiv:1608.05020 [gr-qc] (2016).Google Scholar
  7. 7.
    Yu. G. Ignat’ev, A. A. Agathonov, and D. Yu. Ignatyev, Grav. Cosmol., 24, No. 1, 1–12 (2018).Google Scholar
  8. 8.
    Yurii Ignat’ev, Alexander Agathonov, and Irina Kokh, arXiv:1810.09873 [gr-qc] (2018).Google Scholar
  9. 9.
    Yu. G. Ignat’ev and A. R. Samigullina, Space, Time and Fund. Interact., No. 1, 100–102 (2017).Google Scholar
  10. 10.
    Yu. G. Ignat’ev and A. R. Samigullina, Russ. Phys. J., 60, No. 7, 1173–1181 (2017).Google Scholar
  11. 11.
    Yu. G. Ignat’ev, D. Yu. Ignatyev, and A. R. Samigullina, Grav. Cosmol., 24, No. 2, 148–153 (2018); arXiv:1705.05000 [gr-qc] (2017).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Kazan Federal UniversityKazanRussia

Personalised recommendations