Advertisement

Ab Initio Study of Phosphorescence of Hetero[8]Circulenes

  • R. R. ValievEmail author
  • G. V. Baryshnikov
  • V. N. Cerepanov
  • D. Sundholm
Article
  • 1 Downloads

Quantum chemical calculations of phosphorescence lifetime are performed for the first time by ab initio CC2 and TD-DFT methods for hetero[8]circulenes bearing Si and Ge atoms. According to the results of calculations, a lower value of τphos for tetragermatetrathia[8]circulene (II) originates from two factors: almost 29 times more distorted main macrocycle II and almost four times larger spin-orbit coupling matrix element between T1 and S0 by virtue of heavier Ge atoms as compared to Si. The τphos values calculated by CC2 ideally agree with its experimental value; the difference is less than 2 and 0.3 s for tetrasilatetrathia[8]circulene (I) and tetragermatetrathia[8]circulene (II) molecules, respectively. The agreement of the lifetimes calculated by TD-DFT is only within an order of magnitude. The main intramolecular decay channel of the T1 state is internal conversion between T1 and S0 owing to simultaneous spin-orbit and nonadiabatic interaction of their wavefunctions.

Keywords

circulenes hetero[8]circulenes oxygen quantum chemistry photodynamic therapy phosphorescence 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. V. Baryshnikov, B. F. Minaev, and V. A. Minaeva, Russ. Chem. Rev., 84, 455–484 (2015).ADSCrossRefGoogle Scholar
  2. 2.
    G. V. Baryshnikov, R. R. Valiev, N. N. Karaush, and B. F. Minaev, Phys. Chem. Chem. Phys., 16, 15367–15374 (2014).CrossRefGoogle Scholar
  3. 3.
    G. V. Baryshnikov, R. R. Valiev, N. N. Karaush, et al., Phys. Chem. Chem. Phys., 18, 8980–8992 (2016).CrossRefGoogle Scholar
  4. 4.
    R. R. Valiev, V. N. Cherepanov, G. V. Baryshnikov, and D. Sundholm, Phys. Chem. Chem. Phys., 20, 6121–6133 (2018).CrossRefGoogle Scholar
  5. 5.
    S. Akahori, H. Sakai, T. Hasobe, et al., Org. Lett., 20, 304–307 (2018).CrossRefGoogle Scholar
  6. 6.
    M. Casida, Recent Advances in Density Functional Methods. Part I, World Scientific, Singapore (1999).Google Scholar
  7. 7.
    C. Hattig and F. J. Weigend, Chem Phys., 113, 5154–5161 (2000).ADSGoogle Scholar
  8. 8.
    C. Hattig and A. Kohn, Chem Phys., 117, 6939–6952 (2002).ADSGoogle Scholar
  9. 9.
    G. V. Baryshnikov, B. F. Minaev, and H. Agren, Chem. Rev., 117, 6500–6537 (2017).CrossRefGoogle Scholar
  10. 10.
  11. 11.
    B. Helmich-Paris, C. Hättig, and C. Wüllen, J. Chem. Theory Comput., 12, 1892–1904 (2016).CrossRefGoogle Scholar
  12. 12.
    TURBOMOLE V7.2 2017; http://www.turbomole.com.
  13. 13.
    R. R. Valiev, V. N. Cherepanov, V. Y. Artyukhov, and D. Sundholm, Phys. Chem. Chem. Phys., 14, 11508–11517(2012).CrossRefGoogle Scholar
  14. 14.
    P. W. Atkins and R. Friedman, Molecular Quantum Mechanics, Oxford University Press (2005).Google Scholar
  15. 15.
    R. R. Valiev, B. F. Minaev, R. M. Gadirov, et al., Russ. Phys. J., 58, No. 9, 1205–1211 (2015).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • R. R. Valiev
    • 1
    • 2
    Email author
  • G. V. Baryshnikov
    • 1
  • V. N. Cerepanov
    • 1
  • D. Sundholm
    • 3
  1. 1.National Research Tomsk State UniversityTomskRussia
  2. 2.National Research Tomsk Polytechnic UniversityTomskRussia
  3. 3.University of HelsinkiHelsinkiFinland

Personalised recommendations