Advertisement

Optically Induced Channel Waveguide Structures with Spatial Modulation of Parameters in the Surface Layer of Lithium Niobate

  • A. D. BezpalyEmail author
  • V. M. Shandarov
  • A. E. Mandel
  • V. I. Bykov
  • K. M. Mambetova
OPTICS AND SPECTROSCOPY
  • 1 Downloads

Results of experimental studies of channel optical waveguide structures with spatially-modulated parameters obtained by point-by-point inducing of refractive index perturbations upon exposure to laser radiation of visible range in Y-cut LiNbO3 samples with photorefractive surface layer are presented.

Keywords

channel waveguide lithium niobate (LiNbO3) photorefractive effect spatial modulation exposure probing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. E. Toney, Lithium Niobate Photonics, Artech House, Boston; London (2015).Google Scholar
  2. 2.
    E. Krätzig and O. Schirmer, in: Photorefractive Materials and Their Applications I, No. 61, P. Günter and J. P. Huignard, eds., Springer, Berlin; Heidelberg (1988), pp. 131–166.Google Scholar
  3. 3.
    M. P. Petrov, S. I. Stepanov, and A. V. Khomenko, Photorefractive Crystals in Coherent Optics [in Russian], Nauka, Saint Petersburg (1992).Google Scholar
  4. 4.
    V. M. Shandarov, Russ. Phys. J., 58, No. 10, 1378–1386 (2015).CrossRefGoogle Scholar
  5. 5.
    D. Kip, Appl. Phys. B, 67, 131–150 (1998).ADSCrossRefGoogle Scholar
  6. 6.
    Y. S. Kivshar and G. P. Agrawal, Optical Solitons: from Fibers to Photonic Crystals, Academic Press (2003).Google Scholar
  7. 7.
    M. Morin, G. Duree, G. Salamo, and M. Segev, Opt. Lett., 20, No. 20, 2066–2068 (1995).ADSCrossRefGoogle Scholar
  8. 8.
    G. C. Valley, M. Segev, B. Crosignani, et al., Phys. Rev. A, 50, R4457 (1994).ADSCrossRefGoogle Scholar
  9. 9.
    V. Shandarov, D. Kip, M. Wesner, and J. Hukriede, J. Opt., A, 2, 500–503 (2000).ADSCrossRefGoogle Scholar
  10. 10.
    F. Chen, Laser Phot. Rev., 6, No. 5, 622–640 (2012).ADSCrossRefGoogle Scholar
  11. 11.
    J. Kushibiki, T. Kobayashi, H. Ishiji, and C. K. Jen, J. Appl. Phys., 85, No. 11, 7863–7868 (1999).ADSCrossRefGoogle Scholar
  12. 12.
    S. A. Davydov, P. A. Trenikhin, V. M. Shandarov, et al., Phys. Wave Phen., 18, No. 1, 1–6 (2010).ADSCrossRefGoogle Scholar
  13. 13.
    A. D. Bezpaly, A. O. Verkhoturov and V. M. Shandarov, Ferroelectrics, 515, No. 1, 34–43 (2017).CrossRefGoogle Scholar
  14. 14.
    A. D. Bezpaly, A. O. Verkhoturov, and V. M. Shandarov, Proc. SPIE, 10603, 10603-1–10603-6 (2017).Google Scholar
  15. 15.
    A. Kanshu, C. E. Rüter, D. Kip, and V. M. Shandarov, Appl. Phys. B, 95, No. 3, 537–543 (2009).ADSCrossRefGoogle Scholar
  16. 16.
    M. Born and E. Volf, Principles of Optics [Russian translation], Nauka, Moscow (1973).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • A. D. Bezpaly
    • 1
    Email author
  • V. M. Shandarov
    • 1
  • A. E. Mandel
    • 1
  • V. I. Bykov
    • 1
  • K. M. Mambetova
    • 1
  1. 1.Tomsk State University of Control Systems and RadioelectronicsTomskRussia

Personalised recommendations