Advertisement

Russian Physics Journal

, Volume 62, Issue 1, pp 147–155 | Cite as

Analysis of the Variability of the Circular Depolarization Ratio in Remote Sensing of an Inhomogeneous Medium

  • E. V. MasalovEmail author
  • N. N. Krivin
  • A. S. Rudometova
Article

The influence of an inhomogeneous medium filled with scattering particles (for example, precipitation particles) on the polarization characteristics of electromagnetic waves circularly polarized in one (for example, right-hand) direction that propagate in the medium are considered. An approach is proposed for estimation of the influence of the wave polarization conversion on the magnitude of the circular depolarization ratio. The approach is based on representation of the inhomogeneous medium by the homogeneous region and the second region following it with anisotropic polarization properties and the orientation angle of the polarization eigenbasis relative to the measurement basis. A special feature of the proposed approach is the relationship for calculating the circular depolarization ratio of the probing wave backscattered by the inhomogeneous medium using a complex phasor of the wave scattered by the second (anisotropic) region of the medium.

Keywords

circular polarization circular depolarization ratio differential attenuation differential phase shift degree of polarization anisotropy orientation angle of the polarization eigenbasis of the anisotropic region of the medium scattering matrix 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. V. Masalov, N. N. Krivin, and D. E. Ponamarev, Russ. Phys. J., 61, No. 9, 1580–1589 (2018).CrossRefGoogle Scholar
  2. 2.
    E. V. Masalov, in: Materials of the 7th Int. Scientific-Technical Conf. “Actual Problems in Electronic Instrument Engineering,” Novosibirsk (2010), pp. 77–79.Google Scholar
  3. 3.
    S. Tromel, M. R. Kumjian, A. V. Ryzhkov, et al., J. Appl. Meteor. Climatol., 52, 2529–2548 (2013).CrossRefGoogle Scholar
  4. 4.
    E. V. Masalov, N. N. Krivin, and S. Yu. Eshchenko, Russ. Phys. J., 60, No. 9, 1469–1475 (2017).CrossRefGoogle Scholar
  5. 5.
    M. R. Kumjian, J. Operational Meteor., No. 1 (19), 226–242 (2010).Google Scholar
  6. 6.
    E. V. Masalov and V. N. Tatarinov, Zarub. Radielektr., No. 4, 44–52 (1987).Google Scholar
  7. 7.
    E. V. Masalov, N. N. Krivin, and K. V. Kokoulin, Dokl. TUSUR, 21, No. 3, 7–14 (2018).CrossRefGoogle Scholar
  8. 8.
    E. V. Masalov, N. N. Krivin, and A. S. Rudometova, Dokl. TUSUR, 20, No. 2, 33–35 (2017).CrossRefGoogle Scholar
  9. 9.
    E. V. Masalov, V. A. Potekhin, and V. N. Tatarinov, Russ. Phys. J., 26, No. 7, 1–10 (1983).Google Scholar
  10. 10.
    V. N. Tatarinov, L. P. Ligthart, and S. V. Tatarinov, Introduction to Modern Theory of Polarization of Radar Signals. Polarization of Plane Electromagnetic Waves and Its Conversion: A Textbook, Vol. 1 [in Russian], Publishing House of TUSUR, Tomsk (2012).Google Scholar
  11. 11.
    N. N. Badulin, A. P. Batsula, E. B. Kulsheneva, et al., Izv. Akad. Nauk SSSR. Fiz. Atm. Okeana, 20, No. 6 (1984)Google Scholar
  12. 12.
    T. Oguti, Proc. IEEE, 71, No. 9, 6–65 (1983).Google Scholar
  13. 13.
    A. P. Rodimov, V. V. Popovskii, and V. I. Dmitriev, Zarub/ Radioelektr.,No. 7, 25–37 (1980).Google Scholar
  14. 14.
    D. B. Kanareikin, N. F. Pavlov, and V. A. Potekhin, Polarization of Radar Signals [in Russian], Radio Svyaz’, Moscow (1966).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • E. V. Masalov
    • 1
    Email author
  • N. N. Krivin
    • 1
  • A. S. Rudometova
    • 1
  1. 1.Tomsk State University of Control Systems and RadioelectronicsTomskRussia

Personalised recommendations