Advertisement

Russian Physics Journal

, Volume 62, Issue 1, pp 119–126 | Cite as

The Influence of Vacancy Concentration of Low-Stability Pre-Transitional Structural-Phase States and Energy Characteristics of NiAl Intermetallide

  • A. I. PotekaevEmail author
  • A. A. Chaplygina
  • P. A. Chaplygin
  • M. D. Starostenkov
  • V. V. Kulagina
  • A. A. Klopotov
  • L. S. Grinkevich
CONDENSED-STATE PHYSICS
  • 2 Downloads

Using the Monte Carlo method, the influence of vacancy concentration on the structural-phase states and energy characteristics is investigated by the example of an intermetallic compound NiAl in the course of its heating and cooling. According to the analysis, the availability and concentration of vacancies are important factors in the pre-transitional low-stability structural-phase states prior to transformation. On the one hand, neither the vacancies nor their concentration affect the temperature ranges of structural-phase transformations, on the other hand, they essentially influence both the pre-transitional low-stability structural-phase states and the rate of diffusion processes. The temperature behavior of the short-range order parameter suggests that the higher the vacancy concentration (i.e., system’s defectiveness), the higher the temperatures at which the tendencies for increasing atomic ordering would be manifested due to intensified diffusion. This, in turn, evidences of a higher starting structural transformation temperature with an increase in the number of defects in the alloy during cooling. An analysis of the temperature curves of the long-range order parameter of the NiAl intermetallide allows making a conclusion that an increased vacancy concentration (i.e., the alloy’s defectiveness) gives rise to a logical result – decreased long-range ordering in the system in the region of low-stability pre-transitional states and increased starting transformation temperature.

Keywords

intermetallic alloy low-stability pre-transitional states atomic order structure defects 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. V. Kositsyn and I. I. Kositsyn, Usp. Fiz. Met., 9, 195–258 (2008).CrossRefGoogle Scholar
  2. 2.
    A. I. Potekaev, M. D. Starostenkov, and V. V. Kulagina, The Influence of Point and Planar Defects on the Structural-Phase Transformations in the Pre-Transitional Low-Stability Region of Metallic Systems (Ed. A. I. Potekaev) [in Russian], NTL Publ., Tomsk (2014).Google Scholar
  3. 3.
    N. A. Koneva, L. I. Trishkina, A. I. Potekaev, and E. V. Kozlov, Structural-Phase Transformations in Low-Stability States of Metallic Systems under the Thermal-Force Action (Ed. A. I. Potekaev) [in Russian], NTL Publ., Tomsk (2015).Google Scholar
  4. 4.
    P. A. Chaplygin, A. I. Potekaev, A. A. Chaplygina, et al., Russ. Phys. J., 58, No. 4, 485–491 (2015).CrossRefGoogle Scholar
  5. 5.
    A. A. Chaplygina, P. A. Chaplygin, M. D. Starostenkov, et al., Fund. Probl. Sovr. Materialoved., 13, No. 3, 403–407 (2016).Google Scholar
  6. 6.
    A. I. Potekaev, A. A. Chaplygina, P. A. Chaplygin, et al., Russ. Phys. J., 59, No. 5, 605–611 (2016).CrossRefGoogle Scholar
  7. 7.
    A. I. Potekaev, A. A. Chaplygina, M. D. Starostenkov, et al., Russ. Phys. J., 55, No. 7, 814–824 (2012).CrossRefGoogle Scholar
  8. 8.
    A. I. Potekaev, A. A. Klopotov, and E. V. Kozlov, Russ. Phys. J., 54, No. 9, 1012–1023 (2012).CrossRefGoogle Scholar
  9. 9.
    A. I. Potekaev, A. A. Chaplygina, V. V. Kulagina, et al., Russ. Phys. J., 60, No. 2, 215–226 (2017).CrossRefGoogle Scholar
  10. 10.
    A. I. Potekaev, A. A. Klopotov, L. I. Trishkina, et al., Bull. RAS. Physics, 80, No. 11, 1576–1578 (2016).Google Scholar
  11. 11.
    A. A. Chaplygina, A. I. Potekaev, P. A. Chaplygin, et al., Fund. Probl. Sovr. Materialoved., 13, No. 2, 155–161 (2016).Google Scholar
  12. 12.
    A. A. Chaplygina, A. I. Potekaev, P. A. Chaplygin, et al., Russ. Phys. J., 59, No. 10, 1532–1542 (2016).Google Scholar
  13. 13.
    G. P. Poletaev, A. I. Potekaev, M. D. Starostenkov, et al., Russ. Phys. J., 58, No. 1, 42–47 (2015).CrossRefGoogle Scholar
  14. 14.
    A. I. Potekaev, M. M. Morozov, A. A. Klopotov, et al., Izv. VUZov, Chern Metallurg., 58, No. 8, 589–596 (2015).Google Scholar
  15. 15.
    A. I. Potekaev, A. A. Chaplygina, P. A. Chaplygin, et al., Russ. Phys. J., 60, No. 9, 1590–1599 (2018).CrossRefGoogle Scholar
  16. 16.
    A. I. Potekaev, A. A. Chaplygina, P. A. Chaplygin, et al., Russ. Phys. J., 60, No. 10, 1775–1785 (2018).CrossRefGoogle Scholar
  17. 17.
    A. I. Potekaev, A. A. Chaplygina, P. A. Chaplygin, et al., Russ. Phys. J., 61, No. 3, 412–427 (2018).CrossRefGoogle Scholar
  18. 18.
    V. I. Iveronova and A. A. Kantzelson, Short-Range Order in Solid Solutions [in Russian], Nauka, Moscow (1977).Google Scholar
  19. 19.
    M. A. Krivoglaz and A. A. Smirnova, The Theory of Ordering Alloys [in Russian], Fizmatgiz, Moscow (1958).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • A. I. Potekaev
    • 1
    • 2
    Email author
  • A. A. Chaplygina
    • 3
  • P. A. Chaplygin
    • 3
  • M. D. Starostenkov
    • 3
  • V. V. Kulagina
    • 2
    • 4
  • A. A. Klopotov
    • 2
    • 5
  • L. S. Grinkevich
    • 1
  1. 1.National Research Tomsk State UniversityTomskRussia
  2. 2.V. D. Kuznetsov Siberian Physical-Technical InstituteTomskRussia
  3. 3.I. I. Polzunov Altai State Technical UniversityBarnaulRussia
  4. 4.Siberian State Medical UniversityTomskRussia
  5. 5.Tomsk State Architecture and Building UniversityTomskRussia

Personalised recommendations