Russian Physics Journal

, Volume 62, Issue 1, pp 90–99 | Cite as

Electrophysical Characteristics of the Pentacene-based MIS Structures with a SiO2 Insulator

  • V. A. NovikovEmail author
  • A. V. Voitsekhovskii
  • S. N. Nesmelov
  • S. M. Dzyadukh
  • T. N. Kopylova
  • K. M. Degtyarenko
  • E. V. Chernikov
  • V. M. Kalygina

In a wide range of frequencies and temperatures, the admittance of MIS structures based on pentacene organic films, formed by thermal evaporation in vacuum on SiO2 and SiO2/Ga2O3 substrates, was experimentally investigated. The capacitance-voltage characteristics of MIS structures with a SiO2 insulator have virtually no hysteresis. It is shown that at temperatures of 150–300 K, an inversion layer is formed in the structures at large positive bias voltages. The concentration of holes in pentacene, determined from the capacitive measurements, exceeds 1018 cm–3 and is practically independent of temperature and frequency. The experimental frequency dependences of the admittance of MIS structures with the SiO2 insulator are in good agreement with the results of calculations performed using the method of equivalent circuits. For structures with a Ga2O3 layer, the negative differential conductance of the insulating layer was detected, which requires the complication of the equivalent circuit. The possibility of using the low-temperature admittance measurements for studying the traps in the pentacene film bulk is shown.


organic semiconductor pentacene MIS structure SiO2 Ga2O3 admittance equivalent circuits low-temperature measurements inversion layer bulk traps 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. S. Sun and L. R. Dalton, Introduction to Organic Electronic and Optoelectronic Materials and Devices, Taylor & Francis, CRC Press, Boca Raton (2016).Google Scholar
  2. 2.
    P. Stallinga, Electrical Characterization of Organic Electronic Materials and Devices, John Wiley & Sons, Chichester (2009).CrossRefGoogle Scholar
  3. 3.
    E. H. Nicollian and J. R. Brews MOS (Metal Oxide Semiconductor) Physics and Technology, Wiley, New York (1982).Google Scholar
  4. 4.
    O. J. Sandberg, M. Nyman, S. Dahlström, et al., Appl. Phys. Lett., 110, No. 15, 153504 (2017).Google Scholar
  5. 5.
    A. Larsen, E. Dahal, J. Paluba, et al., Org. Electron., 62, 660-666 (2018).CrossRefGoogle Scholar
  6. 6.
    T. Noma, D. Taguchi, T. Manaka, et al., Org. Electron., 43, 70-76 (2017).CrossRefGoogle Scholar
  7. 7.
    Y. S. Yang, S. H. Kim, J. I. Lee, et al., Appl. Phys. Lett., 80, No. 9, 1595–1597 (2002).CrossRefGoogle Scholar
  8. 8.
    N. Alves and D. M. Taylor, Appl. Phys. Lett., 92, No. 10, 92 (2008).CrossRefGoogle Scholar
  9. 9.
    I. Torres and D. M. Taylor, J. Appl. Phys., 98, No. 7, 073710 (2005).Google Scholar
  10. 10.
    M. Estrada, F. Ulloa, M. Ávila, et al., IEEE Trans. Electron Dev., 60, No. 6, 2057–2063 (2013).CrossRefGoogle Scholar
  11. 11.
    H. Hirwa, S. Pittner, and V. Wagner, Org. Electron., 24, 303–314 (2015).CrossRefGoogle Scholar
  12. 12.
    A. V. Voitsekhovskii, S. N. Nesmelov, S. M. Dzyadukh, et al., Russ. Phys. J., 57, No. 4, 536–544 (2014).CrossRefGoogle Scholar
  13. 13.
    I. I. Izhnin, S. N. Nesmelov, S. M. Dzyadukh, et al., Nanoscale Res. Lett., 11, 53 (2016).CrossRefGoogle Scholar
  14. 14.
    P. Juhasz, M. Vary, L. Stuchlikova, et al., Org. Electron., 17, 240–246 (2015).CrossRefGoogle Scholar
  15. 15.
    J. W. Zhang, Y. He, X. Q. Chen, et al., Org. Electron., 21, 73–77 (2015).CrossRefGoogle Scholar
  16. 16.
    S. F. Nelson, Y. Y. Lin, D. J. Gundlach, et al., Appl. Phys. Lett., 72, No. 15, 1854–1856 (1998).CrossRefGoogle Scholar
  17. 17.
    Y. X. Ma, C. Y. Han, W. M. Tang, et al., Appl. Phys. Lett., 111, 023501 (2017).CrossRefGoogle Scholar
  18. 18.
    L. M. Pazos-Outón, J. M. Lee, M. H. Futscher, et al., ACS Energy Lett., 2, 476–480 (2017).CrossRefGoogle Scholar
  19. 19.
    Y. J. Lin and C. C. Hung, Microelectron. Rel., 81, 90–94 (2018).CrossRefGoogle Scholar
  20. 20.
    C. Y. Han, W. M. Tang, C. H. Leung, et al., IEEE Trans. Electron Dev., 62, No. 7, 2313–2319 (2015).CrossRefGoogle Scholar
  21. 21.
    W. Wang, X. Shi, X. Li, et al., IEEE Electron Dev. Lett., 37, No. 10, 1332–1335 (2016).CrossRefGoogle Scholar
  22. 22.
    E. Orgiu, S. Locci, B. Fraboni, et al., Org. Electron., 12, 477–485 (2011).CrossRefGoogle Scholar
  23. 23.
    S. J. Pearton, J. Yang, P. H. Cary IV, et al., Appl. Phys. Rev., 5, 011301 (2018).CrossRefGoogle Scholar
  24. 24.
    C. T. Lee, H. Y. Lee, and H. W. Chen, IEEE Electron Dev. Lett., 24, No. 2, 54–56 (2003).CrossRefGoogle Scholar
  25. 25.
    V. M. Kalygina, A. N. Zarubin, E. P. Naiden, et al., Fiz. Tekh. Poluprovodn., 45, No. 8, 1130– 1135 (2011).Google Scholar
  26. 26.
    E. Bezzeccheri, A. Femia, R. Liguori, et al., Mater. Today: Proc., 4, No. 4, 5045–5052 (2017).Google Scholar
  27. 27.
    R. A Liguori, Study on Defects in Organic Semiconductors for Field Effect Transistors, Tesi di Dottorato (2014).Google Scholar
  28. 28.
    I. V. Romanov, A. V. Voitsekhovskii, K. M. Degtyarenko, et al., Russ. Phys. J., 57, No. 11, 1584–1592 (2015).CrossRefGoogle Scholar
  29. 29.
    A. Nigam, M. Premaratne, and P. R. Nair, Org. Electron., 14, 2902–2907 (2013).CrossRefGoogle Scholar
  30. 30.
    A. Nigam, P. R. Nair, M. Premaratne, et al., IEEE Electron Dev. Lett., 35, No. 5, 581–583 (2014).CrossRefGoogle Scholar
  31. 31.
    A. Sleiman, M. C. Rosamond, M. Alba Martin, et al., Appl. Phys. Lett., 100, No. 2, 14 (2012).CrossRefGoogle Scholar
  32. 32.
    A. Benor, A. Hoppe, V. Wagner, et al., Org. Electron., 8, 749–758 (2007).CrossRefGoogle Scholar
  33. 33.
    A. V. Voitsekhovskii, S. N. Nesmelov, and S. M. Dzyadukh, Russ. Phys. J., 48, No. 6, 584–591 (2005).CrossRefGoogle Scholar
  34. 34.
    K. Ghosh. and U. Singisetti, Appl. Phys. Lett., 109, 072102 (2016).CrossRefGoogle Scholar
  35. 35.
    K. Ghosh. and U. Singisetti, J. Appl. Phys., 122, No. 3, 035702 (2017).CrossRefGoogle Scholar
  36. 36.
    R. Ruiz, D. Choudhary, B. Nickel, et al., Chem. Mater., 16, 4497–4508 (2004).CrossRefGoogle Scholar
  37. 37.
    H. Klauk, M. Halik, U. Zschieschang, et al., Appl. Phys. Lett., 82, 4175–4177 (2003).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • V. A. Novikov
    • 1
    Email author
  • A. V. Voitsekhovskii
    • 1
    • 2
  • S. N. Nesmelov
    • 1
  • S. M. Dzyadukh
    • 1
  • T. N. Kopylova
    • 2
  • K. M. Degtyarenko
    • 2
  • E. V. Chernikov
    • 2
  • V. M. Kalygina
    • 1
  1. 1.National Research Tomsk State UniversityTomskRussia
  2. 2.V. D. Kuznetsov Siberian Physical-Technical Institute at Tomsk State UniversityTomskRussia

Personalised recommendations