Advertisement

Russian Physics Journal

, Volume 62, Issue 1, pp 82–89 | Cite as

Influence of the Thermo-Field Electron Emission from the Cathode with a Thin Insulating Film on the Film Emission Efficiency and Ignition Voltage of the Townsend Gas Discharge

  • G. G. BondarenkoEmail author
  • M. R. Fisher
  • Myo Thi Ha
  • V. I. Kristya
PHYSICS OF SEMICONDUCTORS AND DIELECTRICS
  • 2 Downloads

A model of the thermo-field electron emission from the metal cathode with a thin insulating surface film at temperatures of 200–400 K is developed. An expression for the film emission efficiency in the gas discharge is obtained. The efficiency is equal to the fraction of electrons emitted into the film from the metal substrate, which enter the discharge volume and increase the effective secondary-electron emission yield of the cathode. It is shown that the thermo-field mechanism of electron emission influences noticeably the ignition voltage of the low-current discharge with such cathode at rather low temperatures exceeding the room temperature by less than 100 K.

Keywords

low-current gas discharge insulating film thermo-field electron emission discharge ignition voltage 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Yu. D. Korolev and G. A. Mesyats, Physics of Pulsed Gas Breakdown [in Russian], Nauka, Moscow (1991).Google Scholar
  2. 2.
    Yu. P. Raizer, Gas Discharge Physics [in Russian], Izd. Dom “Intellekt”, Dolgoprudny (2009).Google Scholar
  3. 3.
    A. V. Phelps and Z. Lj. Petrović, Plasma Sources Sci. Technol., 8, No. 3, R21–R44 (1999).CrossRefGoogle Scholar
  4. 4.
    S. N. Stamenković, V. Lj. Marković, S. R. Gocić, and A. P. Jovanović, Vacuum, 89, 62–66 (2013).CrossRefGoogle Scholar
  5. 5.
    V. P. Demkin and S. I. Mel’nichuk, Russ. Phys. J., 60, No. 2, 339–345 (2017).CrossRefGoogle Scholar
  6. 6.
    V. Yu. Kozhevnikov, A. V. Kozyrev, and N. S. Semenyuk, Russ. Phys. J., 60, No. 8, 1425–1436 (2017).CrossRefGoogle Scholar
  7. 7.
    G. G. Bondarenko, M. R. Fisher, and V. I. Kristya, Vacuum, 129, 188–191 (2016).Google Scholar
  8. 8.
    G. G. Bondarenko, V. I. Kristya, and D. O. Savichkin, Vacuum, 149, 114–117 (2018).CrossRefGoogle Scholar
  9. 9.
    M. Suzuki, M. Sagawa, T. Kusunoki, et al., IEEE Transactions: ED, 59, No. 8, 2256–2262 (2012).CrossRefGoogle Scholar
  10. 10.
    A. Sobota, R. A. J. M. van den Bos, G. Kroesen, and F. Manders, J. Appl. Phys., 113, No. 4, 043308 (2013).Google Scholar
  11. 11.
    Modinos A. Field, Thermionic and Secondary Electron Emission Spectroscopy, Plenum Press, N. Y. (1984).Google Scholar
  12. 12.
    A. Venkattraman, Appl. Phys. Lett., 104, No. 19, 194101 (2014).CrossRefGoogle Scholar
  13. 13.
    R. G. Forbes, Appl. Phys. Lett., 89, No. 11, 113122 (2006).Google Scholar
  14. 14.
    E. Hourdakis, G. W. Bryant, and N. M. Zimmerman, J. Appl. Phys., 100, No. 12, 123306 (2006).Google Scholar
  15. 15.
    M. A. Hassouba, F. F. Elakshar, and A. A. Garamoon, Fizika A, 11, No. 2, 81–90 (2002).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • G. G. Bondarenko
    • 1
    Email author
  • M. R. Fisher
    • 2
  • Myo Thi Ha
    • 2
  • V. I. Kristya
    • 2
  1. 1.National Research University Higher School of EconomicsMoscowRussia
  2. 2.Bauman Moscow State Technical UniversityKalugaRussia

Personalised recommendations