Russian Physics Journal

, Volume 62, Issue 1, pp 1–11 | Cite as

Wave Interaction with the Defect Characterized by Nonlinearity of General Form

  • S. E. SavotchenkoEmail author

Possible types of stationary states and waves in linear media separated by a nonlinear interface are analyzed. The mathematical formulation of the model is reduced to a one-dimensional boundary value problem for the nonlinear Schrödinger equation. The nonlinearity of the equation in the form of an arbitrary function of the desired field is taken into account only inside the waveguide. It is shown that there are stationary states of three types for different ranges of propagation constant values. The dispersion dependences of the propagation constant as functions of the parameters of the medium and the interface have explicitly been obtained for stationary states of all types, and conditions of their existence have been indicated. It is shown that total wave transition through the interface is possible. It has been established that the total transition of wave through the interface with nonzero parameters can occur only if the nonlinear response of the medium is taken into account.


planar defect interface localized states interface waves energy flux nonlinear Schrödinger equation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    I. S. Panyaev and D. G. Sannikov, Comp. Optics, 41, No. 2, 183–191 (2017).CrossRefGoogle Scholar
  2. 2.
    Yu. S. Kivshar and G. P. Agraval, Optical Solitons. From Fiber Light Guides to Photon Crystals, Academic Press, San Diego (2003).Google Scholar
  3. 3.
    Yu. S. Kivshar and N. N. Rozanova, eds., Nonlinearity in Periodic Structures and Metamaterials: Collection of Articles [in Russian], Fizmatlit, Moscow (2014).Google Scholar
  4. 4.
    D. Mikhalake, P. G. Nazmitdinov, and V. K. Fedyanin, Fiz. Elem. Chast. Atomn. Yadra, 20, No. 1, 198–253 (1989).Google Scholar
  5. 5.
    A. M. Kosevich and A. S. Kovalev, Introduction to Nonlinear Physical Mechanics [in Russian], Naukova Dumka, Kiev (1989).zbMATHGoogle Scholar
  6. 6.
    A. S. Davydov, Solitons in Molecular Systems [in Russian], Naukova Dumka, Kiev (1984).Google Scholar
  7. 7.
    S. E. Savotchenko Russ. Phys. J., 47, No. 5, 556–562 (2004).CrossRefGoogle Scholar
  8. 8.
    O. V. Korovai and P. I. Khadzhi, Fiz. Tverd. Tela, 52, No. 11, 2277–2282 (2010).Google Scholar
  9. 9.
    L. V. Feodorov and K. D. Lyakhomskaya, Pis’ma Zh. Tekh. Fiz., 23, No. 23, 36–39 (1997).Google Scholar
  10. 10.
    B. A. Usievich, D. Kh. Nurligareev, V. A. Sychugov, et al., Kvant. Elektr., 40, No. 5, 437–440 (2010).CrossRefGoogle Scholar
  11. 11.
    A. A. Sukhorukov and Yu. S. Kivshar, Phys. Rev. Lett., 87, 083901 (2001).CrossRefGoogle Scholar
  12. 12.
    N. N. Akhmediev, V. I. Korneyev, and Yu. V. Kuzmenko, Zh. Eksp. Teor. Fiz., 88, No. 1, 107–115 (1985).Google Scholar
  13. 13.
    Y. V. Bludov, D. A. Smirnova, Yu. S. Kivshar, et al., Phys. Rev. B, 89, 035406 (6) (2014).CrossRefGoogle Scholar
  14. 14.
    Y. V. Kartashov, B. A. Malomed, and L. Torner, Rev. Mod. Phys., 83, 247 (2011).CrossRefGoogle Scholar
  15. 15.
    V. I. Gorentsveig, Yu. S. Kivshar, A. M. Kosevich, and E. S. Syrkin, Fiz. Nizk. Temp., 16, No. 11, 1472–1482 (1990).Google Scholar
  16. 16.
    A. B. Borisov and V. V. Kiselev, Nonlinear Waves, Solitons, and Localized Structures in Magnetics. Vol. 1. Quasione-Dimensional Magnetic Solitons [in Russian], Ekaterinburg (2009).Google Scholar
  17. 17.
    I. V. Gerasimchuk, I. Yu. Gorobets, and V. S. Gerasimchuk, J. Nano- Electron. Phys., 2, 02020-1–7 (2016).Google Scholar
  18. 18.
    S. E. Savotchenko, Cond. Matter and Interphases, 19, No. 4, 567–572 (2017).Google Scholar
  19. 19.
    S. E. Savotchenko, Proc. Voronezh State Univ. Ser. Phys. Mathem., No. 1, 44–52 (2018).Google Scholar
  20. 20.
    S. E. Savotchenko, Russ. Phys. J., 44, No. 4, 412–419 (2001).CrossRefGoogle Scholar
  21. 21.
    S. E. Savotchenko, Cond. Matter and Interphases, 19, No. 2, 291–295 (2017).Google Scholar
  22. 22.
    E. E. Savotchenko, Zh. Tekh. Ziz., 87, No. 12, 1776–1781 (2017).Google Scholar
  23. 23.
    S. E. Savotchenko, Commun. Nonlinear Sci. Numer. Simulation, 63, No. 10, 171–185 (2018).MathSciNetCrossRefGoogle Scholar
  24. 24.
    Yu. S. Kivshar, A. M. Kosevich, and O. A. Chubykalo, Zh. Eksp. Teor. Fiz., 93, No. 3 (9), 968–977 (1987).Google Scholar
  25. 25.
    Yu. S. Kivshar, A. M. Kosevich, and O. A. Chubykalo, Phys. Rev. A, 41, No. 3, 1677–1688 (1990).CrossRefGoogle Scholar
  26. 26.
    I. V. Gerasimchuk, J. Nano- Electron. Phys., 4, No. 4, 04024-1–4 (2012).Google Scholar
  27. 27.
    I. V. Gerasimchuk, Zh. Eksp. Teor. Fiz., 121, No. 4, 596–605 (2015).Google Scholar
  28. 28.
    S. E. Savotchenko, Mod. Phys. Lett. B, 32, No. 10, 1850120–12 (2018).MathSciNetCrossRefGoogle Scholar
  29. 29.
    S. E. Savotchenko, Pis’ma Zh. Eksp. Teor. Fiz., 107, No. 8, 481–483 (2018).CrossRefGoogle Scholar
  30. 30.
    S. E. Savotchenko, Cond. Matter and Interphases, 20, No. 2, 255–262 (2018).Google Scholar
  31. 31.
    P. V. Elyutin and V. D. Krivchenkov, Quantum Mechanics [in Russian], Fizmatlit, Moscow (2001).Google Scholar
  32. 32.
    M. D. Tocci, M. J. Bloemer, M. Scalora, et al., Appl. Phys. Lett., 66, 2324–2326 (1995).CrossRefGoogle Scholar
  33. 33.
    S. Lan and H. Ishikawa, J. Appl. Phys., 91, 2573–2577 (2002).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Belgorod State Technological University Named after V. G. ShukhovBelgorodRussia

Personalised recommendations