Two-Magnon Relaxation Processes in Nanocrystalline Thin Magnetic Films

  • A. V. IzotovEmail author
  • B. A. Belyaev
  • P. N. Solovev
  • N. M. Boev

Numerical analysis of the micromagnetic model was used to reveal the ‘resonance’ feature of relaxation processes in nanocrystalline thin magnetic films. This feature manifests itself in the form of sharp broadening of the ferromagnetic resonance (FMR) line at a certain frequency f1 depending on magnetic characteristics of the film, and is observed only in films the thickness of which exceeds some threshold value dmin. Sharp broadening of the FMR line is accompanied by significant shift of the resonance field, whereas the shift value changes the sign at frequency ~ f1. It was shown analytically that the nature of observed effects is associated with the two-magnon process of spin waves scattering on quasi-periodic magnetic microstructure – magnetization ‘ripple’. Obtained expressions for the threshold value of film thickness dmin and frequency of maximum broadening of FMR line f1 agree well with the results of numerical computation of micromagnetic model.


micromagnetic simulation nanocrystallites random magnetic anisotropy ferromagnetic resonance microwave frequencies two-magnon relaxation process 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S.-W. Lee and K.-J. Lee, Proc. IEEE, 104, 1831–1843 (2016).CrossRefGoogle Scholar
  2. 2.
    A. N. Babitskii, B. A. Belyaev, N. M. Boev, et al., Instruments and Experimental Techniques, 59, 3, 425–432 (2016).CrossRefGoogle Scholar
  3. 3.
    A. N. Babitskii, B. A. Belyaev, N. M. Boev, and A. V. Izotov, IEEE Sensors 2017, Conference Proceedings, 316–318 (2017).Google Scholar
  4. 4.
    S. A. Wolf, D. D. Awschalom, R. A. Buhrman, et al., Science, 294, 1488–1495 (2001).Google Scholar
  5. 5.
    A. Barman and J. Sinha, Spin Dynamics and Damping in Ferromagnetic Thin Films and Nanostructures, Switzerland, Springer International Publishing AG (2018).Google Scholar
  6. 6.
    A. G. Gurevich, Magnetic Resonance in Ferrites and Antiferromagnetics [in Russian], Nauka, Moscow (1973).Google Scholar
  7. 7.
    R. D. McMichael and P. Krivosik, IEEE Trans. Magn., 40, 2–11 (2004).ADSCrossRefGoogle Scholar
  8. 8.
    S. S. Kalarickal, P. Krivosik, J. Das, et al., Phys. Rev. B., 77, 054427 (2008).ADSCrossRefGoogle Scholar
  9. 9.
    R. Arias and D. L. Mills, Phys. Rev. B., 60, 7395–7409 (1999).ADSCrossRefGoogle Scholar
  10. 10.
    M. Korner, K. Lenz, R. A. Gallardo, et al., Phys. Rev. B., 88, 054405 (2013).ADSCrossRefGoogle Scholar
  11. 11.
    G. Woltersdorf and B. Heinrich, Phys. Rev. B., 69, 184417 (2004).ADSCrossRefGoogle Scholar
  12. 12.
    I. Barsukov, F. M. Romer, R. Meckenstock, et al., Phys. Rev. B., 84, 140410(R) (2011).ADSCrossRefGoogle Scholar
  13. 13.
    L. Lu, J. Young, M. Wu, et al., Appl. Phys. Lett., 100, 022403 (2012).ADSCrossRefGoogle Scholar
  14. 14.
    B. A. Belyaev, A. V. Izotov, A. A. Leksikov, et al., Solid State Phenom., 215, 233–236 (2014).CrossRefGoogle Scholar
  15. 15.
    H. Hoffmann, IEEE Trans. Magn., 4, Issue 1, 32–38 (1968).ADSCrossRefGoogle Scholar
  16. 16.
    K. J. Harte, J. Appl. Phys., 39, Issue 3, 1503–1524 (1968).ADSMathSciNetCrossRefGoogle Scholar
  17. 17.
    V. A. Ignatchenko, G. V. Degtyarev, JETP [in Russian], 60 Iss. 2, 724–732 (1971).Google Scholar
  18. 18.
    B. A. Belyaev, N. M. Boev, A. V. Izotov, P. N. Solovev, Russ. Phys. J., 61, No. 10, 1798–1805 (2019).CrossRefGoogle Scholar
  19. 19.
    B. A. Belyaev, A. V. Izotov, Physics of the Solid State, 55, Iss. 12, 2491–2500 (2013).ADSCrossRefGoogle Scholar
  20. 20.
    A. J. Newell, W. Williams, and D. J. Dunlop, J. Geophys. Res., 98, 9551–9555 (1993).ADSCrossRefGoogle Scholar
  21. 21.
    K. M. Lebecki, M. J. Donahue, and M. W. Gutowski, J. Phys. D: Appl. Phys., 41, 175005 (2008).CrossRefGoogle Scholar
  22. 22.
    G. Herzer, JMMM, 157/158, 133–136 (1996).Google Scholar
  23. 23.
    B. A. Belyaev, A. V. Izotov, An. A. Leksikov, Physics of the Solid State, 52, Issue 8, 1664–1672 (2010).ADSCrossRefGoogle Scholar
  24. 24.
    M. Sparks, Phys. Rev. B., 1, 3856–3869 (1970).ADSCrossRefGoogle Scholar
  25. 25.
    M. J. Hurben and C. E. Patton, J. Appl. Phys., 83, 4344–4365 (1998).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • A. V. Izotov
    • 1
    • 2
    Email author
  • B. A. Belyaev
    • 1
    • 2
  • P. N. Solovev
    • 1
    • 2
  • N. M. Boev
    • 1
    • 2
  1. 1.Siberian Federal UniversityKrasnoyarskRussia
  2. 2.Kirensky Institute of Physics, Federal Research Center KSC of the Siberian Branch of the Russian Academy of SciencesKrasnoyarskRussia

Personalised recommendations