Advertisement

Melting of a Titanium Alloy Under the Action of Electrical Discharges of Different Duration

  • S. A. PyachinEmail author
  • A. A. Burkov
  • O. I. Kaminskii
  • E. R. Zaikova
Article

This work is dedicated to a study of the influence of the duration of an electrical discharge on the size of the melting zone formed at a cathode of VT20 titanium alloy. It is found that the melting zone possesses radial symmetry and is surrounded by a ring-shaped zone, whose surface is exposed to electrical erosion. The dependence of the radii of the melting region and the erosion zone, and of the volume of melted metal on the duration of the discharge pulse is determined in the interval from 0.05 ms to 1 ms. A mathematical model is proposed, allowing us to calculate the temperature distribution in a metal plate at different times during the discharge. The parameters of a nonstationary surface heat source arising in the region of the electrical discharge are found from the condition of coincidence of the position of the boundary of the solid–melt phase transition observed in experiments and determined by solving the heat transfer equation.

Keywords

electrical discharge nonstationary source heat flux source temperature field cathode titanium alloy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. D. Verkhoturov, Formation of a Surface Layer of a Metal by Electrospark Alloying [in Russian], Dal’nauka, Vladivostok (1995).Google Scholar
  2. 2.
    B. N. Smirnov, Usp. Fiz. Nauk, 179, No. 6, 591–604 (2009).CrossRefGoogle Scholar
  3. 3.
    S. Lu, W. Dong, D. Li, and Y. Li, Comput. Mater. Sci., 45, 327–335 (2009).CrossRefGoogle Scholar
  4. 4.
    M. S. Benilov, J. Phys. D, 41, 144001 (2008).ADSCrossRefGoogle Scholar
  5. 5.
    F. Lago, J. J. Gonzalez, P. Freton, and A. Gleizes, J. Phys. D, 37, 883–897 (2004).ADSCrossRefGoogle Scholar
  6. 6.
    I. Basak and A. Ghosh, J. Mater. Proc. Technol., 71, 350–359 (1997).CrossRefGoogle Scholar
  7. 7.
    N. B. Salah, F. Ghanem, and K. B. Atig, Int. J. Machine Tools & Manufacture, 46, 908–911 (2006).CrossRefGoogle Scholar
  8. 8.
    S. N. Khimukhin, Ri Khosen, A. D. Verkhoturov, and É. Kh. Ri, Formation of a Layer Structure on Metals and Alloys by Electrospark Treatment [in Russian]. Publishing House of the Far Eastern State Transport University, Khabarovsk (2010).Google Scholar
  9. 9.
    I. V. Kochetova, Electronic Scientific Publication “Scientific Notes PNU,” 7, No. 4, 847– 860 (2016).Google Scholar
  10. 10.
    A. D. Polyanin, Handbook on Linear Equations of Mathematical Physics [in Russian], Fizmatlit, Moscow (2001).Google Scholar
  11. 11.
    V. K. Granovskii, Electric Current in Gases. Steady-State Current [in Russian], Nauka, Moscow (1971).Google Scholar
  12. 12.
    L. I. Sharakhovsky, A. Marotta, and A. M. Essiptchouk, Appl. Surf. Sci., 253, 797–804 (2006).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • S. A. Pyachin
    • 1
    Email author
  • A. A. Burkov
    • 1
  • O. I. Kaminskii
    • 1
  • E. R. Zaikova
    • 2
  1. 1.Institute of Materials Science of the Khabarovsk Scientific Center of the Far-Eastern Branch of the Russian Academy of SciencesKhabarovskRussia
  2. 2.Moscow Physical-Technical Institute (State University)MoscowRussia

Personalised recommendations