Advertisement

On the Mean Value of the Potential and Kinetic Energy of an Electron in a Hydrogenlike Atom

  • V. V. SkobelevEmail author
Article
  • 2 Downloads

The mean values of the potential \( \left\langle \hat{\varPi}\right\rangle \) and kinetic \( \left\langle \hat{\mathrm{T}}\right\rangle \) energy of an electron in a hydrogenlike atom are found. It is found by direct calculation that \( \left\langle \hat{\varPi}\right\rangle =2E \) and \( \left\langle \hat{\mathrm{T}}\right\rangle =\mid E\mid \) for arbitrary states with set of quantum numbers {n,l,m} . Such relations for the ground state {n = 1, l = m = 0} are well known and are a particular case of this general result. Thus, this work can have methodological value as a helpful supplement to the traditional university course in quantum mechanics. Moreover, on the scientific plane, it is possible to apply these results to a calculation of the energy of a two-electron atom by the variational method in spaces with number of dimensions D = 3,2, and 1.

Keywords

hydrogenlike atom mean values arbitrary states kinetic and potential energy variational method 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. A. Sokolov, Yu. M. Loskutov, and I. M. Ternov, Quantum Mechanics, Holt, Rinehart and Winston, New York (1966).Google Scholar
  2. 2.
    E. A. Hylleraas, Z. Phys., 63, 291 (1930).ADSCrossRefGoogle Scholar
  3. 3.
    E. A. Hylleraas, Z. Phys., 63, 771 (1930).ADSCrossRefGoogle Scholar
  4. 4.
    L. D. Landau and E. M. Lifshitz, Quantum Mechanics (Non-Relativistic Theory), Pergamon Press, Oxford (1977).zbMATHGoogle Scholar
  5. 5.
    I. S. Gradshteyn and I. M. Ryzhik, Tables of Integrals, Series, and Products, Academic Press, Cambridge (1965).Google Scholar
  6. 6.
    A. Gorlitz et al., Phys.Rev. Lett., 87, 130402 (2001).ADSCrossRefGoogle Scholar
  7. 7.
    B. Zaslow and C. E. Zandler, Am. J. Phys., 35, 1118 (1967).ADSCrossRefGoogle Scholar
  8. 8.
    R. London, Am. J. Phys., 27, 649 (1959).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Moscow Polytechnic UniversityMoscowRussia

Personalised recommendations