Advertisement

Electrical and Galvanomagnetic Properties of Extruded Samples of Bi85Sb15 Solid Solutions with Pb and Te Impurities

  • M. M. TagievEmail author
  • G. D. Abdinova
Article
  • 1 Downloads

The effect of tellurium impurities on the electrical conductivity (σ), Seebeck coefficient (α), and Hall coefficient R of extruded Bi85Sb15 + 0.001 аt.% Pb is studied in the temperature range 77–300 K. It is found that doping with tellurium impurities up to 0.001 at. % compensating acceptor Pb atoms leads to a strong decrease in the electron density and, consequently, to an increase in σ and significant decrease in the values of α and R. The materials obtained can be used as the n-branch of thermoelements operating at temperatures of ~77 K.

Keywords

Seebeck coefficient electrical conductivity Hall coefficient electrical properties galvanomagnetic properties 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. S. Zemskov, A. D. Belaya, P. G. Borodin, Izv. Akad. Nauk SSSR, Neorg. Mater., 18, No. 7, 1154–1157 (1982).Google Scholar
  2. 2.
    V. S. Zemskov, P. G. Borodin, A. D. Belaya, S. A. Roslov, Deposited in VINITI, No. 983 (1978).Google Scholar
  3. 3.
    Mikio Koyano and Masanori Yamanouchi, J. Phys.: Conf. Ser., 150, 5 (2009).Google Scholar
  4. 4.
    O. I. Markov, Usp. Prikladn. Fiz., 2, No. 5, 447–452 (2014).Google Scholar
  5. 5.
    N. P. Stepanov and V. M. Grabov, Fiz. Tekh. Poluprovodn., 36, No. 9, 1045–1048 (2002).Google Scholar
  6. 6.
    M. M. Tagiev, Z. F. Agaev, D. Sh. Abdinov, Neorg. Mater., 30, No. 3, 375–378 (1994).Google Scholar
  7. 7.
    M. M. Tagiev, F. S. Samedov, and Z. F. Agaev, Prikladn. Fiz., No. 2, 123–125 (1999).Google Scholar
  8. 8.
    M. M. Tagiev, Russ. Phys. J., 60, No. 10, 1794–1797 (2018).CrossRefGoogle Scholar
  9. 9.
    M. G. Banaga, O. B. Sokolov, and L. D. Dudkin, Izv. Akad. Nauk SSSR, Neorg. Mater., 22, No. 4, 619–622 (1986).Google Scholar
  10. 10.
    A. Nikolaeva, L. Konopko, I. Gergishan, et al., Fiz. Nizk. Temper., 44, Vyp. 8, 996–1004 (2018).Google Scholar
  11. 11.
    V. M. Grabov, V. A. Komarov, and N. S. Kablukova, Fiz. Tverd. Tela, 58, Vyp. 3, 605–611 (2016).Google Scholar
  12. 12.
    N. P. Stepanov, Izv. Vyssh. Uchebn. Zaved. Fiz., 47, No. 3, 33–42 (2004).MathSciNetGoogle Scholar
  13. 13.
    A. F. Panarin, Reports of VII Intern. Semin. “Thermoelectrics and their Applications”, St. Petersburg, A. F. Ioffe Physical-Technical Inst. of RAS, 102–104 (2000).Google Scholar
  14. 14.
    S. S. Gorelik and M. Ya. Dashevskii, Materials Science of Semiconductors and Dielectrics [in Russian], Metallurgiya, Moscow (1988).Google Scholar
  15. 15.
    G. D. Abdinova, G. Z. Bagieva, and M. M. Tagiev, Neorg. Mater., 44, No. 4, 474–476 (2008).CrossRefGoogle Scholar
  16. 16.
    M. M. Tagiev and D. Sh. Abdinov, Neorg. Mater., 31, No. 31, 1405–1407 (1995).Google Scholar
  17. 17.
    N. B. Brandt, S. M. Chudinov, and V. G. Karavaev, Zh. Eksp. Teor. Fiz., No. 70, 2296–2317 (1976).Google Scholar
  18. 18.
    M. M. Tagiev, F. S. Samedov, and S. N. Samedov, Int. J. Infrared Millimeter Waves, 18, No. 9, 1813–1820 (1997).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Azerbaijan State University of EconomicsBakuRepublic of Azerbaijan
  2. 2.Institute of Physics of the National Academy of Sciences of AzerbaijanBakuRepublic of Azerbaijan

Personalised recommendations