Does the Excited Cluster 14N* Exist in the 15O Nucleus?

  • S. B. DubovichenkoEmail author
  • N. A. Burkova

On the basis of the modified potential two-cluster model with forbidden state which effectively take the Pauli principle into account, calculations have been performed of the astrophysical S-factor of radiative p14N capture to the ground state of the 15O nucleus at proton energies up to 5 MeV in the center-of-mass system (c.m.s.) with allowance for wide resonances up to 3.4 MeV in the c.m.s. For an acceptable explanation of the available experimental data it is necessary to allow the existence of the 14N cluster in the excited state 14N* at an excitation energy of 5.69 MeV and angular momentum Jπ = 1. It is assumed that in such a case it is possible to use the wave function of the 4D1/2 state with respect to the relative motion of the p14N* clusters. It is also shown that a description of the S-factor of p14N capture in the resonance region is possible only under the assumption that all of the low-lying resonances at 260(1/2+), 987(3/2+), 1447(1/2+), 2187(3/2+), and 3211(3/2+) keV in the c.m.s. are 4D1/2 and 4D3/2 scattering waves.


nuclear astrophysics light atomic nuclei low and astrophysical energies elastic scattering p14N system excited 14N* cluster potential description radiative capture total cross section thermonuclear reactions potential cluster model forbidden states classification of states according to Young tableaux 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. B. Dubovichenko, Thermonuclear Processes in Stars and Universe, Scholar’s Press, Saarbrücken (2015).Google Scholar
  2. 2.
    S. B. Dubovichenko, Radiative Neutron Capture and Primordial Nucleosynthesis of the Universe, Lambert Academic Publishing, Saarbrücken (2016).Google Scholar
  3. 3.
    V. G. Neudatchin et al., Phys. Rev. C, 45, 1512–1527 (1992).ADSCrossRefGoogle Scholar
  4. 4.
    S. B. Dubovichenko and A. V. Dzhazairov-Kakhramanov, Nucl. Phys. A, 941, 335–363 (2015).ADSCrossRefGoogle Scholar
  5. 5.
    J. Grineviciute and D. Halderson, J. Phys. G, 35, 055201 (2008).Google Scholar
  6. 6.
    Y. Xu, K. Takahashi, S. Goriely, et al., Nucl. Phys. A, 918, 61–169 (2013).ADSCrossRefGoogle Scholar
  7. 7.
    J. T. Huang, C. A. Berutulani, and V. Guimarães, Atom. Data Nucl. Data, 96, 824–847 (2010).ADSCrossRefGoogle Scholar
  8. 8.
    Reza Ghasemi and Hossein Sadeghi, Res. Phys., 9, 151–165 (2018).Google Scholar
  9. 9.
    A. Bohr and B. Mottelson, Nuclear Structure, Benjamin, New York (1969).Google Scholar
  10. 10.
    C. Angulo and P. Descouvemont, Nucl. Phys. A, 690, 755–768 (2001).ADSCrossRefGoogle Scholar
  11. 11.
    R. E. Azuma et al., Phys. Rev., 81, 045805 (2010).Google Scholar
  12. 12.
    C. Itzykson and M. Nauenberg, Rev. Mod. Phys., 38, 95–101 (1966).ADSCrossRefGoogle Scholar
  13. 13.
    F. Ajzenberg-Selove, Nucl. Phys. A, 523, 1–196 (1991).ADSCrossRefGoogle Scholar
  14. 14.
    S. B. Dubovichenko and A. V. Dzhazairov-Kakhramanov, Int. J. Mod. Phys. E, 26, 1630009 (2017).Google Scholar
  15. 15.
  16. 16.
  17. 17.
    A. Formicola et al., Phys. Lett. B, 591, 61–68 (2004).ADSCrossRefGoogle Scholar
  18. 18.
    U. Schröder et al., Nucl. Phys. A, 467, 240–260 (1987).ADSCrossRefGoogle Scholar
  19. 19.
    G. R. Plattner and R. D. Viollier, Nucl. Phys. A, 365, 8–12 (1981).ADSCrossRefGoogle Scholar
  20. 20.
    G. Imbriani et al., Eur. Phys. J., 25, 455–466 (2005).ADSCrossRefGoogle Scholar
  21. 21.
    R. C. Runcle et al., Phys. Rev. Lett., 94, 082503 (2005).Google Scholar
  22. 22.
    A. Formicola et al., Nucl. Phys. A, 719, 94c–98c (2003).ADSCrossRefGoogle Scholar
  23. 23.
    L. Wagner et al., Phys. Rev. C, 97, 015801 (2018).Google Scholar
  24. 24.
    S. V. Artemov et al., Phys. Atom. Nucl., 75, 320–337 (2012).CrossRefGoogle Scholar
  25. 25.
    E. G. Adelberger et al., Rev. Mod. Phys., 83, 195–245 (2011).ADSCrossRefGoogle Scholar
  26. 26.
    A. M. Mukhamedzhanov et al., Phys. Rev. C, 67, 065804 (2003).Google Scholar
  27. 27.
    Q. Li et al., Phys. Rev. C, 93, 055806 (2016).Google Scholar
  28. 28.
    S. V. Artemov et al., Phys. Atom. Nucl., 75, 291 (2012).ADSCrossRefGoogle Scholar
  29. 29.
    С. Angulo et al., Nucl. Phys. A, 656, 3–183 (1999).ADSCrossRefGoogle Scholar
  30. 30.
    G. R. Caughlan and W. A. Fowler, Atom. Data Nucl. Data Tab., 40, 283–334 (1988).ADSCrossRefGoogle Scholar
  31. 31.
    R. Depalo, Int. J. Mod. Phys.: Conf. Ser., 46, 1860003 (2018).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.V. G. Fesenkov Astrophysical Institute of the National Center for Space Research and Technology of the Aerospace Agency of the Ministry of Defense and the Aerospace Industry of the Republic of KazakhstanAlmatyKazakhstan
  2. 2.Al Farabi Kazakh National University, Ministry of Education and Science of the Republic of KazakhstanAlmatyKazakhstan

Personalised recommendations