Advertisement

Concentration-Dependent Transformation Plasticity Effect During Hydrogenation of Technically Pure Titanium Irradiated with an Electron Beam

  • O. B. PerevalovaEmail author
  • A. V. Panin
  • M. S. Kazachenok
Article
  • 2 Downloads

Using the methods of X-ray diffraction analysis, the concentration-dependent transformation plasticity effect +TPE) is investigated during hydrogenation of the technically pure titanium (VT1-0) irradiated on one side with a low-energy high-current electron beam in a SOLO facility using three 50 μs pulses at the pulse repetition frequency 0.3 s–1 and the beam energy density W = 18 J/cm2. Its irradiation is performed in an argon atmosphere at the residual pressure 0.02 Pa. It is found out that the concentration-dependent TPE in the course of hydrogenation is due to the low stability state of the α-Ti crystal lattice formed in the specimen surface layer upon its e-beam irradiation. Relaxation of the elastic plane macrostresses occurs as a result of the development of concentration inhomogeneity of hydrogen or formation of α″-Ti and ω-Ti martensitic phases.

Keywords

technical-purity titanium VT1-0 low-energy high-current electron beam X-ray structure analysis residual macrostresses full mean square displacement of atoms low-stability states of α-Ti crystal lattice concentration inhomogeneity of hydrogen α″-Ti and ω-Ti phases 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. V. Spivak, Usp. Fiz. Nauk, 178, Iss. 9, 897–922 (2008).Google Scholar
  2. 2.
    X. D. Zhang, S. Z. Hao, X. N. Li, et al., Appl. Surf. Sci., 257, 5899–5902 (2011).ADSCrossRefGoogle Scholar
  3. 3.
    O. B. Perevalova, A. V. Panin, and Yu. F. Ivanov, Fiz. Khim. Obr. Mater., No.5, 36–45 (2016).Google Scholar
  4. 4.
    A. V. Panin, M. S. Kazachenok, O. M. Borodovitsina, et al., Phys. Metals Metallogr., 117, Iss. 6, 550–561 (2016).ADSCrossRefGoogle Scholar
  5. 5.
    L. L. Meisner, A. I. Lotkov, M. G. Ostapenko, and E.Yu. Gudimova, Appl. Surf. Sci., 280, 398–404 (2013).Google Scholar
  6. 6.
    O. B. Perevalova and A. V. Panin, Fiz. Khim. Obr. Mater., No. 6, 50–62 (2017).Google Scholar
  7. 7.
    D. I. Proskurovsky, V. P. Rotshtein, G. E. Ozur, et al., J. Vac. Sci. Technol., A16(4), 2480–2488 (1998).ADSCrossRefGoogle Scholar
  8. 8.
    L. K. Savitskaya, Methods of X-Ray Structural Investigations [in Russian], TSU Publ., Tomsk (2003).Google Scholar
  9. 9.
    L. L. Meisner, A. I. Lotkov, M. G. Ostapenko, and E. Yu. Gudimova, Fizich. Mezomekh., 15, No. 3, 79–89 (2012).Google Scholar
  10. 10.
    O. S. Gorelik, L. N. Rastorguev, and Yu. A. Skakov, X-Ray Diffraction and Optoelectronic Analysis [in Russian], Metallurgiya, Moscow (1970).Google Scholar
  11. 11.
    Ch. Kittel, Introduction to Solid State Physics, Wiley, New York (2005)zbMATHGoogle Scholar
  12. 12.
    D. M. Vasiliev and B. I. Smirnov, Usp. Fiz. Nauk, LXXIII, No. 3, 503–558 (1961).Google Scholar
  13. 13.
    A. Taylor, X-Ray Metallography, Wiley, New York (1961).Google Scholar
  14. 14.
    X-Ray Diffraction in Physical Materials Science (Ed. Yu. A. Bagaryatskii), Metallurgizdat, Moscow (1961).Google Scholar
  15. 15.
    S. K. Sangal and P. K. Sharma, Czech. J. Phys, B18, 1413–1415 (1968).Google Scholar
  16. 16.
    M. A. Krivoglaz, Theory of X-Ray and Thermal Neutron Scattering by Real Crystals [in Russian], Nauka, Moscow (1967).Google Scholar
  17. 17.
    P. V. Geld and R. A. Ryabov, Hydrogen in Metals and Alloys [in Russian], Metallurgiya, Moscow (1974).Google Scholar
  18. 18.
    V. V. Sumin, Physics of Particles and Nuclei, 36, No 2, 191–212 (2005).Google Scholar
  19. 19.
    О. B. Perevalova, A. V. Panin, O. M. Kretova, and A. D. Teresov, Bulletin of the Russian Academy of Sciences: Physics, 78, No. 8, 706–709 (2014).ADSCrossRefGoogle Scholar
  20. 20.
    О. B. Perevalova, E. V. Konovalova, N. A. Koneva, and E. V. Kozlov, The Influence of Atomic Ordering on the Grain-Boundary Ensembles of FCC-Solid Solutions [in Russian], NTL Publ., Tomsk (2014).Google Scholar
  21. 21.
    E. V. Kozlov, N. A. Popova, L. N. Ignatenko, et al., Izv. Vuzov.Fiz., 37, No. 4, 76–82 (1994).Google Scholar
  22. 22.
    E. V. Kozlov, N. A. Popova, L. N. Ignatenko, et al., Russ. Phys. J., 45, No. 3, 285–302 (2002).CrossRefGoogle Scholar
  23. 23.
    E. V. Kozlov, L. L. Meisner, A. A. Klopotov, and A. S. Tailashev, Russ. Phys. J., 28, No. 5, 426–432 (1985).Google Scholar
  24. 24.
    A. I. Potekaev, A. A. Klopotov, E. V. Kozlov, and V. V. Kulagina, Low-Stability Pre-transitional Structures in Titanium Nickelide [in Russian], NTL Publ., Tomsk (2004).Google Scholar
  25. 25.
    A. A. Klopotov, A. I. Potekaev, V. V. Kulagina, E. V. Kozlov, Russ. Phys. J., 54, No.9, 1012–1023 (2012).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • O. B. Perevalova
    • 1
    Email author
  • A. V. Panin
    • 1
    • 2
  • M. S. Kazachenok
    • 1
  1. 1.Institute of Strength Physics and Materials Science of the Siberian Branch of the Russian Academy of SciencesTomskRussia
  2. 2.National Research Tomsk Polytechnic UniversityTomskRussia

Personalised recommendations