Advertisement

Structural and Phase Transfromations in Superlocalization Band in Ni3Ge Single Crystal

  • Yu. V. Solov’evaEmail author
  • S. V. Starenchenko
  • A. I. Ancharov
  • V. A. Starenchenko
Article
  • 5 Downloads

The paper studies the high-temperature plastic deformation in Ni3Ge alloy single crystals localizing in a band a few tens of microns wide that reaches the shear strain of thousands of percent. The electron backscatter diffraction and synchrotron radiation techniques allow investigating the structure of the single crystal in the band of super-localized plastic deformation. It is shown that super-localization of plastic deformation occurs due to the formation of polycrystalline multi-level substructure in the initial single crystal. The grain size and grain misorientation bimodal distributions are determined in the polycrystalline substructure. Also, regions of amorphous state are observed in the super-localization band at high homologous temperature Т > 0.5Tm. A partial destruction of the far atomic order is detected.

Keywords

L12 structure intermetallic super-localization electron backscatter diffraction synchrotron radiation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ch. T. Sims, N. S. Stoloff, and W. C. Hagel, Superalloys II [Russian translation], Metallurgiya, Мoscow (1995), 384 p.Google Scholar
  2. 2.
    P. Veyssière and G. Saada, Dislocations in Solids, Chapter 53, F. R. N. Nabarro and M. S. Duesbery, eds., North-Holland Publishing Co., Elsevier Sci. Publ., Amsterdam (1996), p. 255.Google Scholar
  3. 3.
    W. Püschl, Mat. Sci. Eng. A, 319–321, 266–269 (2001).CrossRefGoogle Scholar
  4. 4.
    S. I. Rao, D. M. Dimiduk, T. A. Parthasarathy, et al., Scr. Mater., 66, No. 6, 410–413 (2012).CrossRefGoogle Scholar
  5. 5.
    A. Korner, H. P. Karnthaler, and C. Hitzenberger, Phil. Mag. A, 56, No. 1, 73–88 (1987).ADSCrossRefGoogle Scholar
  6. 6.
    J. Michel, C. Coupeau, Y. Nahas, et al., Intermetallics, 50, 86–93 (2014).CrossRefGoogle Scholar
  7. 7.
    N. Frage, S. Kalabukhov, A. Wagner, and E. B. Zaretsky, Intermetallics, 102, 26–33 (2018).CrossRefGoogle Scholar
  8. 8.
    V. A. Starenchenko, E. V. Kozlov, Yu. V. Solov’eva, et al., Mat. Sci. Eng. A-Struct., 483–484, No. 1–2, 602–606 (2008).CrossRefGoogle Scholar
  9. 9.
    V. A. Starenchenko, Yu. V. Solov’eva, Ya. D. Fakhrutdinova, and L. A. Valuiskaya, Russ. Phys. J., 55, No. 1, 62–73 (2012).CrossRefGoogle Scholar
  10. 10.
    Yu. V. Solovieva, V. A. Starenchenko, B. I. Burtsev, et al., Bulletin of the Russian Academy of Sciences: Physics, 70, No. 11, 1929–1931 (2006).Google Scholar
  11. 11.
    N. P. Lyakishev, ed., Phase Diagrams of Double Metal Systems: Reference Manual, in 3 vol., Mashinostroenie, Moscow (1997), 1024 p.Google Scholar
  12. 12.
    A. I. Ancharov, Russ. Phys. J., 60, No. 3, 543–549 (2017).CrossRefGoogle Scholar
  13. 13.
    P. A. Piminov, et al., Physics Procedia, 84, 19–26 (2016).ADSCrossRefGoogle Scholar
  14. 14.
    V. A. Starenchenko, Yu. V. Solov’eva, Ya. D. Fakhrutdinova, and L. A. Valuiskaya, Russ. Phys. J., 54, No. 8, 885–897 (2011).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Yu. V. Solov’eva
    • 1
    Email author
  • S. V. Starenchenko
    • 1
  • A. I. Ancharov
    • 2
    • 3
  • V. A. Starenchenko
    • 1
  1. 1.Tomsk State University of Architecture and BuildingTomskRussia
  2. 2.The Institute of Solid State Chemistry and Mechanochemistry of the Siberian Branch of the Russian Academy of SciencesNovosibirskRussia
  3. 3.Budker Institute of Nuclear Physics of the Siberian Branch of the Russian Academy of SciencesNovosibirskRussia

Personalised recommendations