Advertisement

Russian Physics Journal

, Volume 61, Issue 10, pp 1899–1907 | Cite as

The Influence of Dimesions and Phase State of Structural Elements on Mechanical Properties of Binary Alloys of the Ti–Nb and Zr–Nb Systems

  • A. Yu. EroshenkoEmail author
  • Yu. P. Sharkeev
  • I. A. Glukhov
  • P. V. Uvarkin
  • A. M. Mairambekova
  • A. I. Tolmachev
Article
  • 3 Downloads

The results of investigation of the influence of the structural element size and phase state of the Ti – 45 wt.% Nb and Zr – 1 wt.% Nb binary alloys on their mechanical properties are presented. The structural states of the alloys with the structural elements of different dimensions were formed from the ultrafine-grained state via annealing. The curves of dependence of the yield strength and microhardness on the average size of the structural elements, d1/2, are obtained using the Hall–Petch relation. It is shown that for the Zr – 1 wt.% Nb alloy, the Hall–Petch relation is fulfilled in the entire range of sizes under study, from ultrafine-grained to finegrained states 0.2–1.9 μm. For the Ti – 45 wt.% Nb alloy, in the analysis of the Hall–Petch relationship within the structural element size range 0.43–45 μm, its phase composition is taken into consideration, specifically, the presence of dispersion-strengthened β-phase grains, α-phase subgrains, nonequilibrium nanosized ω- phase, and the bimodal grain-subgrain structure.

Keywords

Ti – 45 wt.% Nb and Zr – 1 wt.% Nb alloys microstructure structure elements size yield strength microhardness phase composition 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Z. Valiev, A. P. Zhilyaev, and T. G. Langdon, Bulk Nanostructured Materials: Fundamentals and Applications, John Wiley & Sons, New Jersey (2014).Google Scholar
  2. 2.
    R. A. Andrievskii and A. M. Glezer, Phys. Met. Metallogr., 88, No. 1, 45–66 (1999).Google Scholar
  3. 3.
    H. Gleiter, Acta Mater., 48, No. 1, 1–29 (2000).CrossRefGoogle Scholar
  4. 4.
    G. Dirras, D. Tingaud, D. Uedа, et al., Mater. Lett., 206, No. 1, 214–216 (2017). DOI:  https://doi.org/10.1016/j.matlet.2017.07.027.
  5. 5.
    W. L. Wang, X. L. Wang, W. Mei, and J. Sun, Mater. Characterizat., 120, 263–267 (2016).CrossRefGoogle Scholar
  6. 6.
    Y. Li, A. J. Bushby, and D. J. Dunstan, Proc. R. Soc., 472 (2190), 20150890 (2018). DOI:  https://doi.org/10.1098/rspa.2015.0890.CrossRefGoogle Scholar
  7. 7.
    Y. Kajima and A. Takaichi, Health Care Current Rev., 3, Iss. 1, 137 (2015). DOI:  https://doi.org/10.4172/2375-4273.1000137.Google Scholar
  8. 8.
    X. Liu, Sh. Chen, J. K. H. Tsoi, and J. P. Matinlinna, Regenerat. Biomater., 4, Iss. 5, 315–323 (2017). DOI:  https://doi.org/10.1093/rb/rbx027.CrossRefGoogle Scholar
  9. 9.
    A. Panigrahi, B. Sulkowski, and T. Waitz, J. Mech. Behavior Biomed. Mater., No. 62, 93–105 (2016).CrossRefGoogle Scholar
  10. 10.
    A. Yu. Eroshenko, I. A. Glukhov, A. Mairambekova, et al., AIP Conf. Proc, 1909, 020046–1-020046–4, AIP Publishing LLC, N. Y. (2017).Google Scholar
  11. 11.
    Yu. P. Sharkeev, A. Yu. Eroshenko, P. V. Uvarkin, et al., AIP Conf. Proc, 1783, 020205-1-020205-4, AIP Publishing LLC, N. Y. (2016).Google Scholar
  12. 12.
    E. V. Kozlov, A. N. Zhdanov and N. A. Koneva, Phys. Mesomech., 11, No. 1–2, 42–50 (2008).CrossRefGoogle Scholar
  13. 13.
    Standard Test Methods for Determining Average Grain Size Using Semiautomatic and Automatic Image Analysis, ASTM E1382-97(2010).Google Scholar
  14. 14.
    E. W. Collings, The Physical Metallurgy of Titanium Alloys, American Society for Metals, Metals Park, OH (1984).Google Scholar
  15. 15.
    E. V. Kozlov, A. M. Glezer, N. A. Koneva, et al., Fundamentals of Plastic Deformation of Nanostructured Materials (Ed. A. M. Glezer) [in Russian], Fizmatlit, Moscow (2016).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • A. Yu. Eroshenko
    • 1
    Email author
  • Yu. P. Sharkeev
    • 1
    • 2
  • I. A. Glukhov
    • 1
  • P. V. Uvarkin
    • 1
  • A. M. Mairambekova
    • 3
  • A. I. Tolmachev
    • 1
  1. 1.Institute of Strength Physics and Materials Science of the Siberian Branch of the Russian Academy of SciencesTomskRussia
  2. 2.National Research Tomsk Polytechnic UniversityTomskRussia
  3. 3.National Research Tomsk State UniversityTomskRussia

Personalised recommendations