Structural Organization of Nanocomposite Crystals

  • Yu. V. BorodinEmail author
  • S. A. Ghyngazov
  • A. P. Klishin

A possibility of simulating the structure of real nanomaterials in the elliptical Riemannian space is discussed. It is shown that the experimentally determined parameters of nanomaterials are quite consistent with the simulation patterns. The results of computer simulations and experimental modeling of non-linear processes in solids using the geometrical method and interpretation of the model design patterns are presented. Basically new options of using non-Euclidian models of crystal structures for solving the materials science problems are demonstrated.


nanocomposite structure self-similarity principle sol-gel method 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. P. Ozerov and V. A. Streltsov, Poverkhnost. Roentgen, Synkhr. Nyutron Issled., No. 7, 44–51 (1996).Google Scholar
  2. 2.
    F. Rothen and P. Pieranski, Phys. Rev. E, 53, No. 3, 2828–2842 (1996).ADSCrossRefGoogle Scholar
  3. 3.
    M. I. Visscher and C. E.W. Baner, Phys. Rev. B, 54, No. 4, 2798–2805 (1996).ADSCrossRefGoogle Scholar
  4. 4.
    M. A. Kulakov, G. Henn, and B. Bullemer, Surf. Sci., 346, No. 1–3, 49–54 (1996).ADSCrossRefGoogle Scholar
  5. 5.
    V. S. Edelman, Phys. Lett. A, 210, No. 1–2, 105–109 (1996).ADSCrossRefGoogle Scholar
  6. 6.
    H. Gleiter, J. Appl. Crystallorg., 24, No. 2, 79–90 (1991).CrossRefGoogle Scholar
  7. 7.
    K. V. Grinyaev, I. V. Smirnov, I. A. Ditenberg, et al., Russ. Phys. J., 59, No. 12, 2094–2100 (2016).Google Scholar
  8. 8.
    P. V. Kosmachev, V. A. Vlasov, and N. K. Skripinnikova, Russ. Phys. J., 60, No. 2, 249–253 (2017).CrossRefGoogle Scholar
  9. 9.
    V. N. Nechaev and A. V. Viskovatykh, Russ. Phys. J., 61, No. 2, 216–222(2018).CrossRefGoogle Scholar
  10. 10.
    E. Michalski, S. Kasczmarek, and M. Demianiuk, Acta Crystallorg. A, 44, No. 5, 650–657 (1988).CrossRefGoogle Scholar
  11. 11.
    S. B. Santra and I. Bose, J. Phys. A, 26, No. 16, 3963–3971 (1993).ADSCrossRefGoogle Scholar
  12. 12.
    S. N. Artemenko, A. F. Volkov, and S. V. Zaitsev-Zotov, Usp. Fiz. Nauk, 166, Iss. 4, 434–439 (1996).Google Scholar
  13. 13.
    S. V. Rudnev, Comput. Math. Applic., 16, Nо. 5–8, 597–616 (1988).Google Scholar
  14. 14.
    I.-F. Sadoc and I. Charvolin, J. Phys. Sec. 1, 2, No. 6, 845–859 (1992).Google Scholar
  15. 15.
    A. N. Sergeev, B. S. Semukhin, F. E. Shakalov, et al., in: Abstracts VI All-Russian Conf. on Solid State Chemistry and New Materials, 1, 167–169, Ekaterinburg (1996).Google Scholar
  16. 16.
    Yu. V. Borodin, N. N. Konotop, and B. S. Semukhin, in: Abstracts Sci.-Pract. Conf. dedicated to 100-th Anniversary of TPU, 21, Tomsk (1996).Google Scholar
  17. 17.
    V. I. Vereshchagin, M. A. Sergeev, B. S. Semukhin, and Yu. V. Borodin, Refractor. Industr. Ceramics, 41, No. 11–12, 440–443 (2000).CrossRefGoogle Scholar
  18. 18.
    Y. V. Borodin and A. N. Sergeev, in: Proc. 3rd Int. Forum on Strategic Technology (IFOST-2008), 174–176 (2008).Google Scholar
  19. 19.
    Y. Borodin, in: Proc. 6th Int. Forum on Strategic Technology (IFOST-2011), 218–221 (2011).Google Scholar
  20. 20.
    M. A. Fedotov, V. V. Molchanov, R. N. Zotov, and F. V. Tuzikov, Russ. J. Inorg. Chem., 53, No. 10, 1621–1627 (2008).CrossRefGoogle Scholar
  21. 21.
    V. V. Drobotenko, S. S. Balabanov, and T. I. Storozheva, Vestnik of the N. I. Lobachevsky State University of Nizhniy Novgorod, No. 6, 72–76 (2007).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Yu. V. Borodin
    • 1
    Email author
  • S. A. Ghyngazov
    • 1
  • A. P. Klishin
    • 2
  1. 1.National Research Tomsk Polytechnic UniversityTomskRussia
  2. 2.Tomsk Pedagogical UniversityTomskRussia

Personalised recommendations