Structure and Electromagnetic Properties of Z-Type Barium Ferrite Composite Exposed to External Magnetic Field

  • O. A. DotsenkoEmail author
  • K. O. Frolov
  • K. V. Dorozhkin
  • D. V. Vagner

The paper presents the analysis of the structure and electromagnetic properties of magnetodielectric composite material polymerized under the influence of the external magnetic field. The structure, phase composition and magnetic properties are determined for Z-type barium ferrite employed as a filling material in the production of test specimens. It is shown that the external magnetic field has an effect on the structure of this composite material. The proposed treatment technique allows fabricating test specimens with both magnetic and dielectric anisotropy parameters.


composite material hexagonal ferrite magnetic treatment magnetic permeability dielectric permittivity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. Smit and H. P. J. Wijn, Ferrites [Russian translation], Foreign Languages Publishing House, Moscow (1962) 504 p.Google Scholar
  2. 2.
    F. K. Lotgering, J. Inorg. Nucl. Chem., 9, 113–123 (1959).CrossRefGoogle Scholar
  3. 3.
    R. C. Pullar, Prog. Mat. Sci., 57, No. 7, 1191–1334 (2012).CrossRefGoogle Scholar
  4. 4.
    I. Ali, M. U. Islam, M. S. Awan, et al., J. Supercond. Nov. Magn., 26, No. 11, 3277–3286 (2013); Scholar
  5. 5.
    E. P. Naiden, V. A. Zhuravlev, V. I. Suslyaev, et al., Int. J. Self-Propagating High-Temperature Synthesis, 24, No. 3, 148–151 (2015).CrossRefGoogle Scholar
  6. 6.
    E. P. Naiden, V. A. Zhuravlev, V. I. Itin, et al., Russ. Phys. J., 55, No. 8, 869–877 (2013).CrossRefGoogle Scholar
  7. 7.
    V. A. Zhuravlev, R. V. Minin, V. I. Itin, and I. Y. Lilenko, J. Alloys Compounds, 692, 705–712 (2017).CrossRefGoogle Scholar
  8. 8.
    L. Pan, D. Cao, P. Jing, et al., Nanoscale Res. Lett., 10, 131 (2015).ADSCrossRefGoogle Scholar
  9. 9.
    A. P. Surzhikov, E. N. Lysenko, A. V. Malyshev, et al., Russ. Phys. J., 57, No. 5, 621–626 (2014).CrossRefGoogle Scholar
  10. 10.
    T. Kimura, Annu. Rev. Cond. Matter. Phys., 3, 93–110 (2012).CrossRefGoogle Scholar
  11. 11.
    V. I. Suslyaev, O. A. Dotsenko, E. Yu. Korovin, and G. E. Kuleshov, Russ. Phys. J., 49, No. 9, 940–945 (2006).CrossRefGoogle Scholar
  12. 12.
    L. J. Zhao, Q. Jiang, JMMM, 322, No. 17, 2485–2487 (2010).ADSCrossRefGoogle Scholar
  13. 13.
    G. E. Kuleshov, O. A. Dotsenko, O. A. Kochetkova and V. I. Suslyaev, Int. J. Nanotechnol., 12, No. 3/4, 200–208 (2015).ADSCrossRefGoogle Scholar
  14. 14.
    V. A. Zhuravlev, Russ. Phys. J., 32, No. 1, 33–46 (1989).Google Scholar
  15. 15.
    V.Yu. Kreslin and E. P. Naiden, Instrum. Exp. Tech., 45, No. 1, 55–57 (2002).CrossRefGoogle Scholar
  16. 16.
    O. A. Dotsenko, V. I. Suslyaev, K. O. Frolov, and D. V. Wagner, AIP Conf. Proc., 1772, 040006-1–040006-7 (2016).Google Scholar
  17. 17.
    V. A. Zhuravlev and V. I. Suslyaev, Russ. Phys. J., 49, No. 8, 840–846 (2006).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • O. A. Dotsenko
    • 1
    • 2
    Email author
  • K. O. Frolov
    • 3
  • K. V. Dorozhkin
    • 1
  • D. V. Vagner
    • 1
  1. 1.National Research Tomsk State UniversityTomskRussia
  2. 2.Tomsk State University of Control Systems and RadioelectronicsTomskRussia
  3. 3.Russian Federal Nuclear Center, All-Russian Research Institute of Experimental PhysicsThe Institute of Laser PhysicsSarovRussia

Personalised recommendations