Advertisement

Russian Physics Journal

, Volume 61, Issue 10, pp 1827–1837 | Cite as

Dynamics of Cosmological Models with Nonlinear Classical Phantom Scalar Fields. I. Formulation of the Mathematical Model

  • Yu. G. Ignat’evEmail author
  • A. A. Arathonov
Article

Mathematical models describing the cosmological evolution of classical and phantom scalar fields with self-action are formulated and analyzed. Systems of dynamical equations in the plane, describing homogeneous cosmological models, have been obtained. It is shown that depending on the parameters of the field model, it is possible to violate the single connection of the phase space of the corresponding dynamical model.

Keyword

cosmological model qualitative analysis phantom scalar field 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. S. Gorbunov and V. A. Rubakov, Introduction to the Theory of the Early Universe: Cosmological Perturbations and Inflationary Theory, World Scientific, Singapore (2011).CrossRefzbMATHGoogle Scholar
  2. 2.
    V. A. Belinskii, L. P. Grishchuk, Ya. B. Zel’dovich, and I. M. Khalatnikov, Zh. Eksp. Teor. Fiz., 89, 346–355 (1985).Google Scholar
  3. 3.
    A. D. Dolgov, Ya. B. Zel’dovich, and M. V. Sazhin, Cosmology of the Early Universe [in Russian], Moscow State University Press, Moscow (1988).Google Scholar
  4. 4.
    V. M. Zhuravlev, Zh. Eksp. Teor. Fiz., 120, No. 5, 1043–1061 (2001).Google Scholar
  5. 5.
    L. A. Urena-Lopez and M. J. Reyes-Ibarra, arXiv: 0709.3996v2 [astro-ph] (2009).Google Scholar
  6. 6.
    K. A. Bronnikov and S. G. Rubin, Lectures on Gravitation and Cosmology [in Russian], MEPhY National Research Nuclear University Press, Moscow (2008).Google Scholar
  7. 7.
    V. M. Zhuravlev, T. V. Podymova, and E. A. Pereskokov, Grav. Cosmol., 17, No. 2, 101–109 (2011).ADSCrossRefGoogle Scholar
  8. 8.
    L. A. Urena-Lopez, arXiv:1108.4712v2 [astro-ph.CO] (2012).Google Scholar
  9. 9.
    Yu. G. Ignat’ev, Space, Тime Fund. Interact., No. 3, 16–36 (2016) [arXiv:1609.00745v1[gr-qc] (2016)].Google Scholar
  10. 10.
    Yu. G. Ignat’ev, Space, Тime Fund. Interact., No. 3, 37–47 (2016).Google Scholar
  11. 11.
    Yu. G. Ignat’ev, Grav. Cosmol., No. 23, 131–141 (2017); arXiv:1609.00745 [gr-qc], arXiv:1609.08851 [gr-qc] (2016).Google Scholar
  12. 12.
    Yu. G. Ignat’ev, Classical Cosmology and Dark Energy [in Russian], Publishing House of the Academy of Sciences of the Republic of Tatarstan, Kazan (2016).Google Scholar
  13. 13.
    Yu. G. Ignat’ev and A. R. Samigullina, Russ. Phys. J., 60, No. 7, 1173–1181 (2017).CrossRefGoogle Scholar
  14. 14.
    Yu. G. Ignat’ev, D. Yu. Ignatyev, and A. R. Samigullina, Grav. Cosmol., 24, No 2, 148–153 (2018); arXiv:1705.05000 [gr-qc].Google Scholar
  15. 15.
    V. M. Zhuravlev, Space, Тime Fund. Interact., No. 4, 39–51 (2016).Google Scholar
  16. 16.
    Yu. G. Ignat’ev, Russ. Phys. J., 26, No. 12, 1065–1067 (1983).Google Scholar
  17. 17.
    Yu. G. Ignat’ev and R. R. Kuzeev, Ukr. Fiz. Zh., 29, 1021 (1984).ADSGoogle Scholar
  18. 18.
    Yu. G. Ignatyev and R. F. Miftakhov, Grav. Cosmol., 12, No. 2–3, 179 (2006).ADSGoogle Scholar
  19. 19.
    K. A. Bronnikov and J. C. Fabris, Phys. Rev. Lett., 96, 973 (2006).CrossRefGoogle Scholar
  20. 20.
    S. V. Bolokhov, K. A. Bronnikov, and M. V. Skvortsova, Class. Quantum Grav., No. 29, 245006 (2012).Google Scholar
  21. 21.
    Yu. G. Ignat’ev, Russ. Phys. J., 55, No. 11, 1345–1350 (2012).Google Scholar
  22. 22.
    Yu. G. Ignat’ev, Russ. Phys. J., 55, No. 2, 166–172 (2012).CrossRefGoogle Scholar
  23. 23.
    Yu. G. Ignat’ev, Russ. Phys. J., 55, No. 5, 550–560 (2012).Google Scholar
  24. 24.
    Yu. G. Ignat’ev, The Nonequilibrium Universe: Kinetic Models of Cosmological Evolution [in Russian], Kazan University Press, Kazan (2013).Google Scholar
  25. 25.
    Yu. G. Ignat’ev, Space, Тime Fund. Interact., No. 1, 47–69 (2014).Google Scholar
  26. 26.
    Yu. G. Ignatyev and D. Yu. Ignatyev, Grav. Cosmol., 20, No. 4, 299–303 (2014).ADSMathSciNetCrossRefGoogle Scholar
  27. 27.
    Yu. G. Ignatyev, A. A. Agathonov, and D. Yu. Ignatyev, Grav. Cosmol., 20, No. 4, 304–308 (2014).ADSCrossRefGoogle Scholar
  28. 28.
    Yu. G. Ignatyev, Grav. Cosmol., 21, No. 4, 296–308 (2015).ADSMathSciNetCrossRefGoogle Scholar
  29. 29.
    Yu. G. Ignatyev and A. A. Agathonov, Grav. Cosmol., 21, No. 2, 105–112 (2015).ADSCrossRefGoogle Scholar
  30. 30.
    Yu. G. Ignat’ev and M. L. Mikhailov, Russ. Phys. J., 57, No. 12, 1743–1752 (2015).CrossRefGoogle Scholar
  31. 31.
    Yu. Ignat’ev, A. Agathonov, M. Mikhailov, and D. Ignatyev, Astr. Space Sci., 357, 61 (2015).ADSCrossRefGoogle Scholar
  32. 32.
    Yu. G. Ignat’ev and A. A. Agathonov, Space, Тime Fund. Interact., No. 3, 48–90 (2016).Google Scholar
  33. 33.
    Yurii Ignat’ev, Alexander Agathonov, and Dmitry Ignatyev, arXiv:1608.05020 [gr-qc] (2016).Google Scholar
  34. 34.
    Yu. G. Ignat’ev, A. A. Agathonov, and D. Yu. Ignatyev, Grav. Cosmol., 24, No. 1, 1–12 (2018).Google Scholar
  35. 35.
    Yu. G. Ignat’ev, Space, Тime Fund. Interact., No. 1, 79–98 (2012).Google Scholar
  36. 36.
    Yu. G. Ignat’ev and M. L. Mikhaikov, Space, Тime Fund. Interact., No. 4, 75–90 (2015).Google Scholar
  37. 37.
    Yu. G. Ignat’ev, Russ. Phys. J., 59, No. 1, 20–31 (2016).CrossRefGoogle Scholar
  38. 38.
    Yu. G. Ignat’ev and A. A. Agathonov, Space, Тime Fund. Interact., No. 4, 52–61 (2016).Google Scholar
  39. 39.
    Yu. G. Ignat’ev and A. A. Agathonov, Grav. Cosmol., 23, No. 3, 230–235 (2016) arXiv:1610.04443 [gr-qc] (2016).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Lobachevsky Institute of Mathematics and MechanicsKazan Federal UniversityKazanRussia

Personalised recommendations