Advertisement

Study of Peculiarities of the Microwave Absorption Spectrum of Nanocrystalline Thin Magnetic Films

  • B. A. BelyaevEmail author
  • N. M. Boev
  • A. V. Izotov
  • P. N. Solovev
Article
  • 3 Downloads

Based on the micromagnetic model which takes into account the random distribution of the uniaxial magnetic anisotropy directions in crystallites of a nanocrystalline film, an effective method has been implemented for calculation of the magnetization dynamics in microwave fields. For a certain range of crystallite sizes, when the energy of the random magnetic anisotropy is comparable to the exchange energy, a significant change of the ferromagnetic resonance field, broadening of the resonance line, and the appearance of an asymmetry in the shape of the resonance curve were found. With an increase of the crystallite sizes, the resonance field first grows, then, it quickly decreases to its minimum, and then, it grows again to reach saturation. In this case, the steepness of the left slope of the broadening resonance curve first decreases faster than that of the right slope, leading to the symmetry breaking of the resonance curve shape, then, the curve becomes symmetrical again, and then, the steepness of the left slope becomes greater than that of the right slope.

Keywords

micromagnetic modeling nanocrystallites random magnetic anisotropy ferromagnetic resonance microwave 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Petzold, JMMM, 242–245, 84–89 (2002).CrossRefGoogle Scholar
  2. 2.
    M. Yamaguchi, K. H. Kim, and S. Ikedaa, JMMM, 304, 208–213 (2006).ADSCrossRefGoogle Scholar
  3. 3.
    A. N. Babitskii, B. A. Belyaev, N. M. Boev, et al., Instruments and Experimental Techniques, 59, No. 3, 425–432 (2016).Google Scholar
  4. 4.
    B. A. Belyaev, N. M. Boev, A. V. Izotov, et al., Russ. Phys. J., 61, No. 8, 1367–1375 (2018).CrossRefGoogle Scholar
  5. 5.
    A. N. Lagar’kov, S. A. Maklakov, et al., J. Commun. Technol. Electron., 54, No. 5, 596–603 (2009).CrossRefGoogle Scholar
  6. 6.
    O. Acher and A. L. Adenot, Phys. Rev. B, 62, 11324–11327 (2000).ADSCrossRefGoogle Scholar
  7. 7.
    G. Herzer, JMMM, 157/158, 133–136 (1996).ADSCrossRefGoogle Scholar
  8. 8.
    B. A. Belyaev, A. V. Izotov, and An. A. Leksikov, Phys. Solid State, 52, No. 8, 1664–1672 (2010).ADSCrossRefGoogle Scholar
  9. 9.
    A. J. Newell, W. Williams, and D. J. Dunlop, J. Geophys. Res., 98, 9551–9555 (1993).ADSCrossRefGoogle Scholar
  10. 10.
    B. Van de Wiele, F. Olyslager, L. Dupre´, and D. De Zutter, JMMM, 322, 469–476 (2010).ADSCrossRefGoogle Scholar
  11. 11.
    A. G. Gurevich, Magnetic Resonance in Ferrites and Antiferromagnets [in Russian], Nauka, Moscow (1973).Google Scholar
  12. 12.
    B. A. Belyaev and A. V. Izotov, Phys. Solid State, 55, No. 12, 2491–2500 (2013).ADSCrossRefGoogle Scholar
  13. 13.
    A. V. Izotov and B. A. Belyaev, Russ. Phys. J., 53, No. 9, 900–905 (2011).CrossRefGoogle Scholar
  14. 14.
    M. Grimsditch, L. Giovannini, F. Monotcello, et al., Phys. Rev. B, 70, 054409 (2004).ADSCrossRefGoogle Scholar
  15. 15.
    K. Rivkin and J. B. Ketterson, JMMM, 306, 204–210 (2006).ADSCrossRefGoogle Scholar
  16. 16.
    M. D’aquino, C. Serpico, G. Miano, and C. Forestiere, J. Comput. Phys., 228, 6130–6149 (2009).ADSMathSciNetCrossRefGoogle Scholar
  17. 17.
    N. Vukadinovic, O. Vacus, M. Labrune, et al., Phys. Rev. Lett., 85, 2817–2820 (2000).ADSCrossRefGoogle Scholar
  18. 18.
    S. Labbe and P.-Y. Bertin, JMMM, 206, 93–105 (1999).ADSCrossRefGoogle Scholar
  19. 19.
    C. Vaast-Paci and L. Leylekian, JMMM, 237, 342–361 (2001).ADSCrossRefGoogle Scholar
  20. 20.
    L. D. Landau and E. M. Lifshits, Electrodynamics of Continuous Media, 2-nd ed. [in Russian], Nauka, Moscow (1982).Google Scholar
  21. 21.
    K. M. Lebecki, M. J. Donahue, and M. W. Gutowski, J. Phys. D: Appl. Phys., 41, 175005 (2008).CrossRefGoogle Scholar
  22. 22.
    A. L. Stancik and E. B. Brauns, Vibrational Spectrosc., 47, 66–69 (2008).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • B. A. Belyaev
    • 1
    • 2
    Email author
  • N. M. Boev
    • 1
    • 2
  • A. V. Izotov
    • 1
    • 2
  • P. N. Solovev
    • 1
    • 2
  1. 1.Kirensky Institute of Physics, Federal Research Center KSC of the Siberian Branch of the Russian Academy of SciencesKrasnoyarskRussia
  2. 2.Siberian Federal UniversityKrasnoyarskRussia

Personalised recommendations