Modeling of the Process of Inkjet Printing of Low-Viscosity Liquids
OPTICS AND SPECTROSCOPY
First Online:
- 1 Downloads
An approach to inkjet printing of low-viscosity liquids is suggested consisting in suppression of undesirable weakly damped acoustic oscillations under the action of a double pulse. The duration and amplitude of the second pulse are adjusted so that the arising acoustic oscillations are in antiphase to those of the first pulse.
Keywords
inkjet printing piezo actuator longitudinal wave viscosity sound velocity surface tensionPreview
Unable to display preview. Download preview PDF.
References
- 1.C. T. Chen, Features of Liquid Crystal Display Materials and Processes, InTech (2011).Google Scholar
- 2.N. C. Vaart, H. Lifka, and F. P. M. Budzelaar, J. Soc. Inf. Display, 13, No. 1, 9–16 (2005).CrossRefGoogle Scholar
- 3.B. J. De Gans, P. C. Duineveld, and U. S. Schubert, Adv. Mater., 16, No. 3, 203–213 (2004).CrossRefGoogle Scholar
- 4.A. V. Odod, R. M. Gadirov, T. A. Solodova, et al., Russ. Phys. J., 60, No. 12, 2236–2240 (2017).CrossRefGoogle Scholar
- 5.D. Soltman and V. Subramanian, Langmuir, 24, 2224–2231 (2008).CrossRefGoogle Scholar
- 6.J. F. Dijksman, P. C. Duineveld, M. J. J. Hack, et al., J. Mater. Chem., 17, No. 6, 511–522 (2007).CrossRefGoogle Scholar
- 7.Inkjet Technology for Digital Fabrication (eds. I. M. Hutchings and G. D. Martin), Wiley (2012).Google Scholar
- 8.G. D. Martin, S. D. Hoath, and I. M. Hutchings, J. Phys.: Conf. Ser., 105, 012001 (2008).Google Scholar
- 9.B. Derby, J. Eur. Ceram. Soc., 31, 2543–2550 (2011).CrossRefGoogle Scholar
- 10.M. Tanaka, G. Girard, and R. Davis, Metrologia, 38, 301–309 (2001).ADSCrossRefGoogle Scholar
- 11.N. B. Vargaftik, B. N. Volkov, and L. D. Voljak, J. Phys. Chem. Ref. Data, 12, 817–820 (1983).ADSCrossRefGoogle Scholar
- 12.J. George and N. V. Sastry, J. Chem. Eng. Data, 49, 235–242 (2004).CrossRefGoogle Scholar
- 13.G. S. Kell, J. Chem. Eng. Data, 20, 97–105 (1975).CrossRefGoogle Scholar
- 14.A. Rodriguez, J. Canosa, and J. Tojo, J. Chem. Eng. Data, 46, No. 6, 1506–1515 (2001).CrossRefGoogle Scholar
- 15.J. Vijande, M. M. Pineiro, J. Garcia, et al., J. Chem. Eng. Data, 51, 1778–1782 (2006).CrossRefGoogle Scholar
- 16.J. Troncoso, C. A. Tovar, C. A. Cerdeirina, et al., J. Chem. Eng. Data, 46, 312–316 (2001).CrossRefGoogle Scholar
- 17.E. D. Dikio, S. M. Nelana, et al., Int. J. Electrochem. Sci., 7, 11101–11122 (2012).Google Scholar
- 18.R. Strey and T. Schmeling, Ber. Bunsenges. Phys. Chem., 87, 324–327 (1983).CrossRefGoogle Scholar
- 19.P. C. Senanayke, N. Gee, and G. R. Freeman, Can. J. Chem., 65, 2441–2446 (1987).CrossRefGoogle Scholar
- 20.J. A. Al-Kandary, A. S. Al-Jimaz, and A.-H. M. Abdul-Latif, J. Chem. Eng. Data, 51, No. 6, 2074–2082 (2006).CrossRefGoogle Scholar
- 21.Y. Sreedevi, Ch. Srinivasu, Sk. Fakruddin, et al., Int. Lett. Chem. Phys. Astron., 7, No. 2, 120–124 (2013).CrossRefGoogle Scholar
- 22.I. C. Sanchez, J. Chem. Phys., 79, 405–415 (1983).ADSCrossRefGoogle Scholar
- 23.M. V. Rathnam, D. R. Ambavadekar, and M. Nandini, J. Thermodyn., 2013, Article ID 413878 (8 pp.) (2013).Google Scholar
- 24.A. Kumar, J. Am. Chem. Soc., 115, No. 20, 9243–9248 (1993).CrossRefGoogle Scholar
- 25.J. De Jong, G. De Bruin, et al., J. Acoust. Soc. Am., 120, No. 3, 1257–1265 (2006).ADSCrossRefGoogle Scholar
- 26.J. Wei, C. Yue, G. Zhang, et al., Sensors, 2012 IEEE, 1–4 (2012).Google Scholar
Copyright information
© Springer Science+Business Media, LLC, part of Springer Nature 2019