Advertisement

Russian Physics Journal

, Volume 61, Issue 9, pp 1726–1733 | Cite as

Ab Initio Calculations of Phonon Spectra in BaF2 and PbF2 Crystals

  • A. S. PoplavnoiEmail author
Article
  • 10 Downloads

The density functional theory is used to calculate vibrational spectra, suggest dependencies of total energies and frequencies on BaF2 and PbF2 crystal lattice constants, and obtain the density of two phonon states in PbF2 crystal weighted by thermal occupation numbers. Due to the order-of-magnitude difference between metal and fluorine masses, acoustic and optical branches are determined by metal and fluorine vibrations, respectively. Therefore, phonon spectra can be demonstrated in two Brillouin zones, namely fluorine lattice and sublattice, the number of optical branches being decreased twice. Based on the suggested dependencies of total energies in the crystal and squared frequencies on the lattice parameter, anharmonicity constants are identified. It is shown that with increasing temperature the frequency attenuates. For PbF2 crystal, anharmonicity constants are shown to be higher than for BaF2 crystal, and this fact is supported by the experiment. The model of the density of two phonon states in PbF2 crystal shows that the temperature broadening of Raman frequency is more substantial than that of the infrared active phonon frequency.

Keywords

fluorite density functional phonon spectrum anharmonicity frequency attenuation sublattice 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. V. Chadwick, Solid State Ionics, 8, No. 3, 209 (1983).CrossRefGoogle Scholar
  2. 2.
    P. Hagenmuller, Chemistry and Physics, Academic Press, New York (1985), 560 p.Google Scholar
  3. 3.
    A. Ivanov-Shits and I. V. Murin, Ionics of Solid State [in Russian], in 2 vol., Vol. 2, Saint-Petersburg (2010).Google Scholar
  4. 4.
    A. E. Nikiforov, A. Yu. Zakharov, V. A. Chernyshev, et al., Phys. Solid State, 44, No. 10, 1949-1953 (2002).ADSCrossRefGoogle Scholar
  5. 5.
    M. J. Cooper, K. D. Rouse, and B. T. M. Willis, Acta Cryst., A24. 484 (1968).CrossRefGoogle Scholar
  6. 6.
    M. W. Thomas, Chem. Phys. Lett., 40, No. 1, 111 (1976).ADSCrossRefGoogle Scholar
  7. 7.
    M. H. Dishense, W. Hayes, M. T. Hutchings, and C. Smith, J. Phys. C: Solid State Phys., 15, No. 19, 4043 (1982).ADSCrossRefGoogle Scholar
  8. 8.
    Y. Ito, K. Koto, S. Yoshikado, et al., J. Solid State Chem., 95, 94 (1991).ADSCrossRefGoogle Scholar
  9. 9.
    L. M. Volodkovich, G. S., Petrov R. A. Vecher, and A. A. Vecher, Thermochim. Acta, 88, No. 2P, 497 (1985).Google Scholar
  10. 10.
    D. S. Rimai and R. J. Sladek, Solid State Commun., 31, No. 2, 473 (1979).ADSCrossRefGoogle Scholar
  11. 11.
    D. P. Dandekar, J. J. Tsou, and J. C. Ho, Phys. Rev. B, 20, No. 8, 3523 (1979).ADSCrossRefGoogle Scholar
  12. 12.
    R. B. Roberts and G. K. White, J. Phys. C: Solid State Phys., 19, 7167 (1986).ADSCrossRefGoogle Scholar
  13. 13.
    W. Kaiser, W. G. Spitzer, R. H. Kaiser, and L. E. Howarth, Phys. Rev., 127, No. 6, 1950 (1962).ADSCrossRefGoogle Scholar
  14. 14.
    I. Kosaki, M. Ya. Walach, and A. P. Litwinczuk, Solid State Commun., 53, No. 4, 373 (1985).ADSCrossRefGoogle Scholar
  15. 15.
    G. A. Kourouklis and E. Anastassakis, Phys. Status Solidi (b), 152, 89 (1989).ADSCrossRefGoogle Scholar
  16. 16.
    M. H. Dickens and M. T. Hutchings, J. Phys. C: Solid State Phys., 11, 461 (1978).ADSCrossRefGoogle Scholar
  17. 17.
    K. Schmalzl, Phys. Rev. B, 75, No. 1, 014306 (2007).ADSCrossRefGoogle Scholar
  18. 18.
    J. D. Axe, Phys. Rev., 139A, No. 4, 1215 (1965).ADSCrossRefGoogle Scholar
  19. 19.
    T. M. Maridasan, J. Govindarajan, M. A.H. Nerenbarg, and P. W. M. Jacobs, J. Phys. C: Solid State Phys., 15, L93 (1982).CrossRefGoogle Scholar
  20. 20.
    N. Dutt, A. J. Kaur, and J. Shanker, Phys. Status Solidi (b), 137, 459 (1986).ADSCrossRefGoogle Scholar
  21. 21.
    M. Merawa, M. Llunell, M. Gelize-Duvignay, and R. Dovesi, Chem. Phys. Lett., 369, 7 (2003).ADSCrossRefGoogle Scholar
  22. 22.
    A., Dubinin B. Winkler, K. Knorr, and V. Milman, Eur. Phys. J., 39, 27 (2004).Google Scholar
  23. 23.
    A. S. Poplavnoi, Russ. Phys. J., 51, No. 7, 692-700 (2008).CrossRefGoogle Scholar
  24. 24.
    T. P. Kirienko and A. S. Poplavnoi, Russ. Phys. J., 53. No. 4, 325–330 (2010).CrossRefGoogle Scholar
  25. 25.
    A. S. Poplavnoi and T. P. Fedorova, Russ. Phys. J., 53, No. 7, 766–767 (2010).CrossRefGoogle Scholar
  26. 26.
    A. S. Poplavnoi and T. P. Fedorova, Izv. Vyssh. Uchebn. Zaved., Fiz., 53, No. 9/2, 305 (2010).Google Scholar
  27. 27.
    S. Baroni, A. Dal Corso, et al., www.pwscf.org.
  28. 28.
    A. M. Rappe, K. M. Rabe, E. Kaxiras, and J. D. Joannopoulos, Phys. Rev. B, 41, 1227 (1990).ADSCrossRefGoogle Scholar
  29. 29.
    Z. N. Levine, J. H. Burnett, and E. L. Shirley, Phys. Rev. B, 68, 155120 (2003).ADSCrossRefGoogle Scholar
  30. 30.
    J. Kudronovsky, N. E. Christensen, and J. Masek, Phys. Rev. B, 43, 12597 (1991).ADSCrossRefGoogle Scholar
  31. 31.
    A. S. Poplavnoi, Crystallogr. Rep., 55, No. 2, 169–173 (2010).ADSCrossRefGoogle Scholar
  32. 32.
    K. Wakamura, D., Strauch and H. Schober, Phys. Rev. B, 59, No. 23, 560 (1999).Google Scholar
  33. 33.
    T. P. Fedorova and A. S. Poplavnoi, Izv. Vyssh. Uchebn. Zaved., Fiz., 56, No. 8/3, 138 (2013).Google Scholar
  34. 34.
    K. Schmalzl, D. Strauch, and H. Schober, Phys. Rev. B, 68, No. 1, 144307 (2003).ADSGoogle Scholar
  35. 35.
    A. A. Maradudin and P. A. Flinn, Phys. Rev., 129, 2529 (1963).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Kemerovo State UniversityKemerovoRussia

Personalised recommendations