Advertisement

Russian Physics Journal

, Volume 61, Issue 9, pp 1718–1725 | Cite as

Special Aspects of Microstructure, Deformation and Fracture of Bioinert Zirconium and Titanium-Niobium Alloys in Different Structural States

  • Yu. P. SharkeevEmail author
  • V. A. Skripnyak
  • V. P. Vavilov
  • E. V. Legostaeva
  • A. A. Kozulin
  • A. O. Chulkov
  • A. Yu. Eroshenko
  • O. A. Belyavskaya
  • V. V. Skripnyak
  • I. A. Glukhov
Article
  • 15 Downloads

The characteristics of microstructure, deformation and fracture of Zr – 1 wt% Nb and Ti – 45 wt% Nb bioinert alloys in the coarse- and ultrafine-grained states are investigated. It is shown that the ultrafine-grained structure formed in them ensures excellent mechanical properties of the alloys and affects the stages of the stress-strain curves and the behavior of the maximum temperature vs. deformation time plot. The formation of an α-phase in the Ti – 45 wt% Nb ultrafine-grained alloy suppresses the linear stage VI characterized by a constant strain hardening coefficient. In stage VII, the strain hardening coefficient rapidly becomes negative, which indicates the material softening prior to its failure.

Keywords

Zr – 1 wt% Nb and Ti – 45 wt% Nb alloys ultrafine-grained structure stress-strain plots fracture IR-imaging strain hardening coefficient 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Niinomi, Y. Liu, M. Nakai, et al., Regenerat. Biomater., 3, Iss. 3, 173–185 (2016).Google Scholar
  2. 2.
    X. Liu, Sh. Chen, J. K.H. Tsoi, and J. P. Matinlinna, Regenerat. Biomater., 4, Iss. 5, 315–323 (2017).Google Scholar
  3. 3.
    Y. H. Hon, J. Y. Wang, and Y. N. Pan, Mater. Trans., 44, No. 11, 2384–2390 (2003).CrossRefGoogle Scholar
  4. 4.
    A. Yu. Eroshenko, A. M. Mairambekova, Yu. P. Sharkeev, et al., Lett. Mater., 4, 469–472 (2007).Google Scholar
  5. 5.
    R. Z. Valiev, A. P. Zhilyaev, and T. G. Langdon, Bulk Nanostructured Materials: Fundamentals and Applications, John Wiley & Sons, New Jersey (2014).Google Scholar
  6. 6.
    A. Fedorova, M. Bannikova, A. Terekhina, and O. Plekhov, J. Qualitat. Infrared Thermograthy, 11, Iss. 1, 2–9 (2014).Google Scholar
  7. 7.
    E. A. Moiseichik, J. Appl. Mech. Tech. Phys., 54, No. 1, 116–123 (2013).ADSCrossRefGoogle Scholar
  8. 8.
    Yu. P. Sharkeev, A. Yu. Eroshenko, I. A. Glukhov, et al., AIP Conf. Proc., 1683, 020206-1–020206-4, AIP Publishing LLC, N. Y. (2015).Google Scholar
  9. 9.
    N. A. Koneva, L. I. Trishkina, A. I. Potekaev, and E. V. Kozlov, Structural-Phase Transformations in Low-Stability States of Metallic Systems under Thermal-Force Action (Ed. A. I. Potekaev) [in Russian], NTL Publ., Tomsk (2015).Google Scholar
  10. 10.
    E. V. Kozlov, A. M. Glezer, N. A. Koneva, et al., Fundamentals of Plastic Deformation of Nanostructured Materials [in Russian], Fizmatlit, Moscow (2016).Google Scholar
  11. 11.
    T. M. Poletika, V. I. Danilov, G. N. Narimanova, et al., Tech. Phys., 47, Iss. 9, 1125–1129 (2002).Google Scholar
  12. 12.
    T. M. Poletika, G. N. Narimanova, and S. V. Kolosov, JTF, 51, Iss. 3, 336–341 (2006).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Yu. P. Sharkeev
    • 1
    • 2
    Email author
  • V. A. Skripnyak
    • 3
  • V. P. Vavilov
    • 2
    • 3
  • E. V. Legostaeva
    • 1
  • A. A. Kozulin
    • 3
  • A. O. Chulkov
    • 2
  • A. Yu. Eroshenko
    • 1
  • O. A. Belyavskaya
    • 1
  • V. V. Skripnyak
    • 3
  • I. A. Glukhov
    • 1
  1. 1.Institute of Strength Physics and Materials Science of the Siberian Branch of the Russian Academy of SciencesTomskRussia
  2. 2.National Research Tomsk Polytechnic UniversityTomskRussia
  3. 3.National Research Tomsk State UniversityTomskRussia

Personalised recommendations