Advertisement

Russian Physics Journal

, Volume 61, Issue 9, pp 1709–1717 | Cite as

Basic Relationships of the Autowave Model of a Plastic Flow

  • L. B. ZuevEmail author
  • S. A. Barannikova
  • A. G. Lunev
  • S. V. Kolosov
  • A. M. Zharmukhambetova
Article
  • 10 Downloads

Macroscopic laws of the development of plastic flow localization autowaves in metals, alloys, alkali halide crystals, and rocks are investigated. It is shown that the characteristics of elastic and plastic waves form an elastoplastic invariant. The nature of the invariant is explained, and it is demonstrated that its existence is determined by changes in the entropy of a deformable system in the process of generation of localized plastic flow autowaves. It has been established that the main features of the deformation and deformation hardening processes can be considered as a consequence of the elastoplastic invariant.

Keywords

elasticity plasticity localization autowaves structure dislocations 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Argon, Strengthening Mechanisms in Crystal Plasticity, Oxford University Press, Oxford (2008).Google Scholar
  2. 2.
    E. C. Aifantis, Acta Mech., 225, No. 11, 999–1012 (2014).MathSciNetCrossRefGoogle Scholar
  3. 3.
    J. Hirt and I. Lote, The Teory of Dislocations [Russian translation], Atomizdat, Moscow (1972).Google Scholar
  4. 4.
    D. Kuhlmann-Wilsdorf, in: Dislocations in Solids, Elsevier, Amsterdam (2002), pp. 213–342.Google Scholar
  5. 5.
    L. B. Zuev, V. I. Danilov, and S. A. Barannikova, Physics of Macrolocalization of a Plastic Flow [in Russian], Nauka, Novosibirsk (2008).Google Scholar
  6. 6.
    L. B. Zuev, Izv. RAS, Ser. Fizich., 78, No. 10, 1206–1213 (2014).Google Scholar
  7. 7.
    L. B. Zuev, Fiz. Met. Metalloved., 118, No. 8, 851–860 (2017).Google Scholar
  8. 8.
    V. A. Vas’lev, Yu. M. Romanovskii, and V. G. Yakhno, Autowave Processes [in Russian], Nauka, Moscow (1987).Google Scholar
  9. 9.
    A. Seeger and W. Frank, in: Non Linear Phenomena in Materials Science, L. P. Kubin and G. Martin, eds., Trans Tech Publications (1987), pp. 125–138.Google Scholar
  10. 10.
    Yu. L. Klimontovich, Introduction to Physics of Open Systems [in Russian], Yanus-K, Moscow (2002).Google Scholar
  11. 11.
    L. B. Zuev and V. I. Danilov, Phil. Mag. A, 79, No. 1, 43–57 (1999).ADSCrossRefGoogle Scholar
  12. 12.
    J. B. Rumer and M. Sh. Ryvkin, Thermodynamics, Statistical Physics, and Kinetics [in Russian], Publishing House of Novosibirsk State University, Novosibirsk (2000).Google Scholar
  13. 13.
    V. L. Gilyarov and A. I. Slutsker, Fiz. Tverd. Tela, 56, No. 12, 2407–2409 (2014).Google Scholar
  14. 14.
    A. L. Roitburd, in: Physics of Strain Hardening of Single Crystals [in Russian], Naukova Dumka, Kiev (1972), pp. 5–22.Google Scholar
  15. 15.
    L. B. Zuev and B. S. Semukhin, Phil. Mag. A, 82, No. 10, 1183–1193 (2002).ADSCrossRefGoogle Scholar
  16. 16.
    L. D. Landau and L. M. Lifshits, Hydrodynamics [in Russian], Nauka, Moscow (1988).Google Scholar
  17. 17.
    L. B. Zuev, N. V. Zarikovskaya, S. A. Barannikova, and G. V. Shlyakhova, Metallofiz. Nov. Tekhnol., 36, No. 1, 113–127 (2013).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • L. B. Zuev
    • 1
    Email author
  • S. A. Barannikova
    • 1
  • A. G. Lunev
    • 1
  • S. V. Kolosov
    • 1
  • A. M. Zharmukhambetova
    • 1
  1. 1.Institute of Strength Physics and Materials Science of the Siberian Branch of the Russian Academy of SciencesTomskRussia

Personalised recommendations