Advertisement

Russian Physics Journal

, Volume 61, Issue 9, pp 1687–1694 | Cite as

Temperature Effect on Stress-Strain Properties of Dispersion-Hardened Crystalline Materials with Incoherent Nanoparticles

  • O. I. DaneykoEmail author
  • T. A. Kovalevskaya
Article
  • 3 Downloads

In this paper, the mathematical simulation is used to study the effect from the size of incoherent nanoparticles on thermal strength of heterophase aluminum alloy in materials with the equal volume fraction of the strengthening phase. It is shown that during the deformation process, prismatic dislocation loops and dislocation dipoles contribute to the dislocation density. It is found that the behavior of the flow stress curves of materials with the equal volume fraction of strengthening particles depends on a combination of scale parameters of the strengthening phase at various deformation temperatures. The areas of strong and weak temperature dependence of the flow stress are identified.

Keywords

dispersion-hardened material nanoparticles plastic deformation mathematical modeling strain hardening 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. F. Ashby, Philos. Mag., 14, No. 132, 1157–1178 (1966).ADSCrossRefGoogle Scholar
  2. 2.
    R. Ebeling and M. F. Ashby, Philos. Mag., 13, No. 124, 805–834 (1966).ADSCrossRefGoogle Scholar
  3. 3.
    M. F. Ashby, Physics of Strength and Plasticity [Russian translation], Metallurgiya, Moscow (1972), pp. 88–108.Google Scholar
  4. 4.
    P. B. Hirsch and F. J. Humphreys, Physics of Strength and Plasticity [Russian translation], Metallurgiya, Moscow (1972), pp. 158–186.Google Scholar
  5. 5.
    F. J. Humphreys and P. B. Hirsch, Philos. Mag., 34, 373–399 (1978).ADSCrossRefGoogle Scholar
  6. 6.
    L. E. Popov, V. S. Kobytev, T. A. Kovalevskaya, Sov. Phys. J., 25, No. 6, 532–538 (1982).CrossRefGoogle Scholar
  7. 7.
    L. E. Popov, V. S. Kobytev, T. A. Kovalevskaya, Plastic Deformation of Alloys [in Russian], Metallurgiya, Moscow (1984), 182 p.Google Scholar
  8. 8.
    A. T. Stewart and J. W. Martin, Acta Met., 23, 1–7 (1975).CrossRefGoogle Scholar
  9. 9.
    F. J. Humphreys and P. B. Hirsch, Proc. Royal Soc. London A, 318, No. 1532, 73–92 (1970).ADSCrossRefGoogle Scholar
  10. 10.
    T. A. Kovalevskaya, I. V. Vinogradova, and L. E. Popov, Mathematical Simulation of Plastic Deformation of Heterophase Alloys [in Russian], TSU, Tomsk (1992), 168 p.Google Scholar
  11. 11.
    O. I. Daneyko, T. A. Kovalevskaya, S. N. Kolupaeva, et al., Russ. Phys. J., 54, No. 9, 989–993 (2012).CrossRefGoogle Scholar
  12. 12.
    O. I. Daneyko, N.A. Kulaeva, T.A. Kovalevskaya, and S. N. Kolupaeva, Russ. Phys. J., 58, No. 3, 336–342 (2015).CrossRefGoogle Scholar
  13. 13.
    O. I. Daneyko, T. A. Kovalevskaya, S. N. Kolupaeva, et al., Bulletin of the Russian Academy of Sciences: Physics, 78. No. 3, 229–233 (2014).ADSCrossRefGoogle Scholar
  14. 14.
    O. I. Daneyko, T. A. Kovalevskaya, N. A. Kulaeva, S. N. Kolupaeva, T.A Shalygina, and V. A. Starenchenko, Russ. Phys. J., 57, No. 2, 159–169 (2014).CrossRefGoogle Scholar
  15. 15.
    O. V. Matvienko, O. I. Daneyko, and T. A. Kovalevskaya, Russ. Phys. J., 60, No. 2, 236–248 (2017).CrossRefGoogle Scholar
  16. 16.
    O. I. Daneyko, T. A. Kovalevskaya, and O. V. Matvienko, Russ. Phys. J., 61, No. 7, 1229–1235 (2018).CrossRefGoogle Scholar
  17. 17.
    O. V. Matvienko, O. I. Daneyko, and T. A. Kovalevskaya, Acta Metall. Sin. (Engl. Lett.), 31, No. 12, 1297–1304 (2018).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Tomsk State University of Architecture and BuildingTomskRussia
  2. 2.National Research Tomsk State UniversityTomskRussia

Personalised recommendations