Advertisement

Russian Physics Journal

, Volume 61, Issue 9, pp 1620–1628 | Cite as

Quantum Dynamics of a “Pulsating Heart”

  • V. V. LasukovEmail author
  • T. V. Lasukova
  • M. O. Abdrashitova
Article
  • 6 Downloads

Quantum dynamics of a pulsating mercury drop is investigated. It is demonstrated that the energy of the pulsating mercury drop can be quantized; therefore, it can generate electromagnetic radiation with a discrete spectrum. This allows a quantum generator and a radio-wave amplifier to be developed. The existence of a quantum solution of the classical Newton equation is caused by the nonstationarity of the potential of the corresponding type and by the Ehrenfest theorem. In this case, the corresponding solution is independent of the Planck constant. The quantum solutions of the equations of classical physics possess all attributes of quantum mechanics: wave-particle duality, uncertainty principle, superposition principle, causality principle, quantum interference, radiation with a discrete spectrum, tunneling, and spin effects.

Keywords

beating heart quantum dynamics trajectory-probability duality radiation of a pulsating mercury drop 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. V. Lasukov and T. V. Lasukova, Russ. Phys. J., 57, No. 4, 490–497 (2014).CrossRefGoogle Scholar
  2. 2.
    V.V. Lasukov, Int. J. Geom. Methods Mod. Phys., 13, 1650020 (2016).MathSciNetCrossRefGoogle Scholar
  3. 3.
    M. A. Grabovskii, A. B. Mlodzeevskii, R. V. Telesnin, et al., Lecture Demonstrations in Physics [in Russian], Nauka, Moscow (1972).Google Scholar
  4. 4.
    D. S. De Witt, Phys. Rev. D, 160, 1113 (1967).CrossRefGoogle Scholar
  5. 5.
    D. S. De Witt, Phys. Rev. D, 162, 1195 (1967).CrossRefGoogle Scholar
  6. 6.
    J. B. Hartle and S. W. Hawking, Phys. Rev., 28, 2960 (1983).ADSMathSciNetGoogle Scholar
  7. 7.
    A. Vilenkin, Phys. Lett. B, 117, 25 (1982).ADSCrossRefGoogle Scholar
  8. 8.
    A. D. Linde, Phys. Lett. B, 129, 177 (1983).ADSCrossRefGoogle Scholar
  9. 9.
    A. D. Linde, Phys. Lett. B., 108, 389 (1982).ADSCrossRefGoogle Scholar
  10. 10.
    A. A. Starobinsky, Phys. Lett. B, 91, 99 (1967).ADSCrossRefGoogle Scholar
  11. 11.
    È. B. Gliner, Usp. Fiz. Nauk, 172, 221 (2002).CrossRefGoogle Scholar
  12. 12.
    È. B. Gliner, Zh. Eksp. Teor. Fiz., 49, 342 (1965).Google Scholar
  13. 13.
    I. G. Dymnikova, Phys. Lett. B, 472, 33 (2000).ADSMathSciNetCrossRefGoogle Scholar
  14. 14.
    I. G. Dymnikova, Class. Quantum Grav., 21, 4417 (2004).ADSCrossRefGoogle Scholar
  15. 15.
    I. G. Dymnikova, Class. Quantum Grav., 32, 165015 (2015).ADSMathSciNetCrossRefGoogle Scholar
  16. 16.
    I. G. Dymnikova, Class. Quantum Grav., 33, 145010 (2016).ADSCrossRefGoogle Scholar
  17. 17.
    I. G. Dymnikova, Gen. Rel. Grav., 24, 235 (1992).ADSMathSciNetCrossRefGoogle Scholar
  18. 18.
    I. G. Dymnikova, Int. J. Mod. Phys., 5, 529 (1996).ADSCrossRefGoogle Scholar
  19. 19.
    C. W. Misner and J. A. Wheeler, Ann. Phys., 2, 525 (1957).ADSCrossRefGoogle Scholar
  20. 20.
    J. A. Wheeler, Ann. Phys., 2, 604–614 (1957).ADSCrossRefGoogle Scholar
  21. 21.
    B. L. Al’tshuler and A. O. Barvinskii, Usp. Fiz. Nauk, 166, 46 (1996).Google Scholar
  22. 22.
    A. D. Linde, Particle Physics and Inflationary Cosmology [Russian translation], Nauka, Moscow (1990).CrossRefGoogle Scholar
  23. 23.
    V. V. Lasukov, Russ. Phys. J., 50, No. 8, 839–844 (2007).CrossRefGoogle Scholar
  24. 24.
    V. V. Lasukov and A. N. Kharlova, Russ. Phys. J., 51, No. 3, 321–326 (2008).CrossRefGoogle Scholar
  25. 25.
    V. V. Lasukov, Russ. Phys. J., 52, No. 4, 337–342 (2009).MathSciNetCrossRefGoogle Scholar
  26. 26.
    A. A. Sokolov and I. M. Ternov, Quantum Mechanics and Nuclear Physics [in Russian], Prosveshchenie, Moscow (1970).Google Scholar
  27. 27.
    H. A. Olsen and Yu. P. Kunashenko, Phys. Rev. A, 56, 527–537 (1997).ADSCrossRefGoogle Scholar
  28. 28.
    K. B. Korotchenko, Y. P. Kunashenko, and T. A. Tukhfatullin, Nucl. Instrum. Methods Phys. Res. B, 276, 14–18 (2012).ADSCrossRefGoogle Scholar
  29. 29.
    K. B. Korotchenko and Y. P. Kunashenko, Nucl. Instrum. Methods Phys. Res. B, 309, 88–91 (2013).ADSCrossRefGoogle Scholar
  30. 30.
    Y. P. Kunashenko, Surf. J. Investig. X-ray, Synchrotron Neutron Tech., 6, 271–276 (2012).CrossRefGoogle Scholar
  31. 31.
    T. A. Tukhfatullin, Y. L. Pivovarov, G. N. Dudkin, et al., Nucl. Instrum. Methods Phys. Res. B, 402, 236–239 (2017).ADSCrossRefGoogle Scholar
  32. 32.
    V. M. Bystritsky, Vit M. V. M. Bystritsky, G. N. Dudkin, et al., Int. J. Mod. Phys. E, 26, No. 3, 1–8 (2017).CrossRefGoogle Scholar
  33. 33.
    G. N. Dudkin, S. I. Kuznetsov, A. Nurkin, et al., Nucl. Instrum. Methods Phys. Res. A, 875, 137–140 (2017).ADSCrossRefGoogle Scholar
  34. 34.
    P. A. Chaplygin, M. D. Starostenkov, A. I. Potekaev, et al., Russ. Phys. J., 58, No. 4, 485–491 (2015).CrossRefGoogle Scholar
  35. 35.
    A. I. Potekaev, A. A. Klopotov, M. D. Starostenkov, et al., Steel in Transl., 43, 184 (2013).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • V. V. Lasukov
    • 1
    Email author
  • T. V. Lasukova
    • 2
  • M. O. Abdrashitova
    • 1
  1. 1.National Research Tomsk Polytechnic UniversityTomskRussia
  2. 2.Tomsk State Pedagogical UniversityTomskRussia

Personalised recommendations