Advertisement

Russian Physics Journal

, Volume 61, Issue 9, pp 1568–1579 | Cite as

Radiant Energy Extinction in the Radiative Transfer Equation for Crystal Clouds

  • O. V. SheferEmail author
  • B. A. Kargin
Article
  • 4 Downloads

Systematic information on the application of the extinction formalization of different types for solving the equation of radiative transfer in a crystal cloud is presented. The basic laws of visible and infrared radiation extinction are illustrated that provide the basis for the assessment of the extent with which the special features of the energy and polarization extinction characteristics formed by crystals with different microphysical, optical, and orientational parameters must be taken into account. It is shown that large plates with preferred orientation stand out among crystals of all types in the degree and stability of manifestation of the polarization extinction characteristics and their spectral dependence. For such particles, the polarization extinction effect can be higher by several orders of magnitude and constitute more than 50% of the energy characteristic of the extinction.

Keywords

radiative transfer equation extinction polarization optical radiation crystal clouds 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Chandrasekhar, Radiant Energy Transfer [Russian translation], Inostrannaya Literatura, Moscow (1953).Google Scholar
  2. 2.
    I. N. Minin, Theory of Radiative Transfer in Planetary Atmospheres [in Russian], Nauka, Moscow (1988).Google Scholar
  3. 3.
    G. E. Thomas and K. Stamnes, Radiative Transfer in the Atmosphere and Ocean, Cambridge University Press, Cambridge (1999).CrossRefGoogle Scholar
  4. 4.
    A. B. Kargin, B. A. Kargin, and M. V. Lavrov, Russ. Phys. J., 56, No. 3, 241–250 (2013).CrossRefGoogle Scholar
  5. 5.
    B. A. Kargin, A. B. Kargin, and S. M. Prigarin, Proc. SPIE, 10035, 100352S (2016).CrossRefGoogle Scholar
  6. 6.
    S. M. Prigarin, Opt. Atm. Okeana, 29, No. 9, 747–751 (2016).Google Scholar
  7. 7.
    T. A. Sushkevich, Mathematical Models of Radiative Transfer [in Russian], Binom. Laboratoriya Znanii, Moscow (2006).Google Scholar
  8. 8.
    A. J. Baran, J. Quant. Spectr. Rad. Trans., 110, 1239–1260 (2009).Google Scholar
  9. 9.
    M. S. Town, V. P. Walden, and S. G. Warren, J. Climate, 20, 544–559 (2007).ADSCrossRefGoogle Scholar
  10. 10.
    A. Avramon and J. Y. Harrington, J. Geophys. Res., 115, D03205 (2010).ADSGoogle Scholar
  11. 11.
    T. F. Stocker, D. Qin, G.-K. Plattner, at al., eds., IPCC, Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge (2013).Google Scholar
  12. 12.
    M. I. Mishchenko, J. W. Hovenier, and L. J. Travis, eds., Scattering, Absorption, and Emission of Light by Small Particles, Cambridge University Press, Cambridge (2000).Google Scholar
  13. 13.
    M. I. Mishchenko, L. J. Travis, and A. A. Laris, Scattering, Absorption, and Emission of Light by Small Particles, Cambridge University Press, Cambridge (2002).Google Scholar
  14. 14.
    M. I. Mishchenko, L. J. Travis, and A. A. Laris, Multiple Scattering of Light by Particles. Radiative Transfer and Coherent Backscattering, Cambridge University Press, Cambridge (2006).Google Scholar
  15. 15.
    G. V. Rosenberg, Usp. Fiz. Nauk, LVI, No. 1, 78–110 (1955).Google Scholar
  16. 16.
    C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles [Russian translation], Mir, Moscow (1986).Google Scholar
  17. 17.
    M. I. Mishchenko, N. T. Zakharova, N. G. Khlebtsov, et al., J. Quant. Spectr. Rad. Trans., 178, 276–283 (2016).ADSCrossRefGoogle Scholar
  18. 18.
    A. Penttila, E. Zubko, K. Lumme, et al., J. Quant. Spectr. Rad. Trans., 106, 417–436 (2007).ADSCrossRefGoogle Scholar
  19. 19.
    M. A. Yurkin and A. G. Hoekstra, J. Quant. Spectr. Rad. Trans., 112, 2234–2247 (2011).ADSCrossRefGoogle Scholar
  20. 20.
    A. A. Popov, Proc. SPIE, 2822, 186194 (1996).Google Scholar
  21. 21.
    O. A. Volkovitskii, L. N. Pavlova, and A. G. Petrushin, Optical Properties of Crystal Clouds, Gidrometeoizdat [in Russian], Leningrad (1984).Google Scholar
  22. 22.
    A. Auer and D. Veal, Atm. Sci., 27, 919–926 (1970).ADSCrossRefGoogle Scholar
  23. 23.
    M. I. Mishchenko, N. T. Zakharova, N. G. Khlebtsov, et al., J. Opt. Soc. Am. A, 11, 1376–1377 (1994).ADSCrossRefGoogle Scholar
  24. 24.
    Y. Takano and K. N. Liou, J. Opt. Soc. Am. A, 10, 1243–1256 (1993).ADSGoogle Scholar
  25. 25.
    Y. Takano and K. N. Liou, J. Opt. Soc. Am. A, 11, 1378 (1994).ADSCrossRefGoogle Scholar
  26. 26.
    M. I. Mishchenko, M. J. Berg, C. M. Sorensen, et al., J. Quant. Spectr. Rad. Trans., 110, 323–327 (2009).Google Scholar
  27. 27.
    L. Bi, P. Yang, and G. W. Kattawar, Appl. Opt., 49, 4641–4646 (2010).ADSCrossRefGoogle Scholar
  28. 28.
    P. Yang, M. Wendish, L. Bi, et al., J. Quant. Spectr. Rad. Trans., 112, 2035–2039 (2011).Google Scholar
  29. 29.
    M. Gao, P. Yang, and G. W. Kattawar, J. Quant. Spectr. Rad. Trans., 131, 72–81 (2013).Google Scholar
  30. 30.
    C. Prabhakara, R. S. Fraser, G. Dalu, et al., J. Appl. Meteor., 27, 379–399 (1988).ADSCrossRefGoogle Scholar
  31. 31.
    C. Prabhakara, J. M. Yoo, G. Dalu, et al., J. Appl. Meteor., 29, 1313–1329 (1990).ADSCrossRefGoogle Scholar
  32. 32.
    A. A. Popov, Proc. SPIE, 3220, 380–389 (1997).ADSCrossRefGoogle Scholar
  33. 33.
    O. V. Shefer and A. A. Popov, Appl. Opt., 49, 1434–1445 (2010).ADSCrossRefGoogle Scholar
  34. 34.
    O. V. Shefer, J. Quant. Spectr. Rad. Trans., 117, 104–113 (2013).ADSCrossRefGoogle Scholar
  35. 35.
    O. V. Shefer, J. Quant. Spectr. Rad. Trans., 178, 350–360 (2016).ADSCrossRefGoogle Scholar
  36. 36.
    A. J. Heymsfield, Atm. Tech., 8, 17–24 (1976).Google Scholar
  37. 37.
    A. A. Popov, Dokl. Akad. Nauk SSSR, 303, 594–597 (1988).ADSGoogle Scholar
  38. 38.
    O. V. Shefer, J. Quant. Spectr. Rad. Trans., 201, 148–155 (2017).ADSCrossRefGoogle Scholar
  39. 39.
    S. G. Warren and R. E. Brandt, J. Geophys. Res., 113, D14220 (2008).ADSCrossRefGoogle Scholar
  40. 40.
    R. Mesheryakov, A. Moiseev, A. Yu. Demin, et. al., Key Eng. Mat., 685, 943–947 (2016).CrossRefGoogle Scholar
  41. 41.
    A.Yu. Demin, S. M. Marchuk, and V. I. Reizlin, in: Proc. 9th Korea-Russia International Symposium on Science and Technology (KORUS 2005), Novosibirsk (2005), pp. 592–593; DOI:  https://doi.org/10.1109/KORUS.2005.1507790.

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.National Research Tomsk Polytechnic UniversityTomskRussia
  2. 2.Institute of Computational Mathematics and Mathematical Geophysics of the Siberian Branch of the Russian Academy of SciencesNovosibirskRussia
  3. 3.Novosibirsk State UniversityNovosibirskRussia

Personalised recommendations