Advertisement

Streamer Breakdown of Atmospheric-Pressure Air in a Non-Uniform Electric Field at High Overvoltages

  • V. F. Tarasenko
  • G. V. Naidis
  • D. V. Beloplotov
  • M. I. Lomaev
  • D. A. Sorokin
  • N. Yu. Babaeva
PLASMA PHYSICS

Experimental and theoretical investigations of a breakdown of atmospheric-pressure air are performed in a strongly non-uniform electric field. Using an ICCD-camera, the dynamics of formation of streamer and diffuse discharges is studied. The data on the streamer characteristics (propagation velocity, plasma parameters, dynamics of the nitrogen emission band N2(C–B) are obtained during the breakdown development in a non-uniform electric field.

Keywords

streamer breakdown atmospheric-pressure air ionization wave simulation ICCD 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Raether, Electron Avalanches and Breakdown in Gases, Butterworths, London (1964).Google Scholar
  2. 2.
    Yu. D. Korolev and G. A. Mesyats, Physics of Pulsed Breakdown in Gases [in Russian], Nauka, Moscow (1991).Google Scholar
  3. 3.
    S. M. Starikovskaia, N. B. Anikin, S. V. Pancheshnyi, et al., Plasma Sources Sci. Technol., 10, No. 2, 344–355 (2001).ADSCrossRefGoogle Scholar
  4. 4.
    Yu. P. Raizer, Gas Discharge Physics [in Russian], Intellekt, Dolgoprudnyi (2009).Google Scholar
  5. 5.
    S. Yatom, V. Vekselman, J. Z. Gleizer, and Ya. E. Krasik, J. Appl. Phys., 109, 073312 (2011).ADSCrossRefGoogle Scholar
  6. 6.
    Runaway Electrons Preionized Diffuse Discharges (Ed. V. F. Tarasenko), Nova Science Publishers, Inc., N. Y. (2014).Google Scholar
  7. 7.
    A. Yu. Starikovskiy, IEEE Trans. Plasma Sci., 39, No. 11, 2602–2603 (2011).ADSCrossRefGoogle Scholar
  8. 8.
    P. Tardiveau, L. Magne, E. Marode, et al., Plasma Sources Sci. Technol., 25, Iss. 5, 054005 (2016).ADSCrossRefGoogle Scholar
  9. 9.
    D. V. Beloplotov, M. I. Lomaev, D. A. Sorokin, and V.F. Tarasenko, Russ. Phys. J., 60, No. 8, 1308-1313 (2017).CrossRefGoogle Scholar
  10. 10.
    G. V. Naidis, V. F. Tarasenko, N. Y. Babaeva, and M. I. Lomaev, Plasma Sources Sci. Technol., 27, 013001 (2018).ADSCrossRefGoogle Scholar
  11. 11.
    D. V. Beloplotov, V. F. Tarasenko, D. A. Sorokin, and M. I. Lomaev, JETP Letters, 106, Iss. 10, 653–658 (2017).  https://doi.org/10.1134/S0021364017220064 ADSCrossRefGoogle Scholar
  12. 12.
    V. F. Tarasenko, E. Kh. Baksht, A. G. Buranchenko, et al., Zh. Tekh. Fiz., 84, Iss. 4, 26–30 (2014).Google Scholar
  13. 13.
    M. I. Lomaev, D. V. Beloplotov, V. F. Tarasenko, and D. A. Sorokin, IEEE Trans. Dielectr. Electr. Insul., 22, Iss. 4, 1833–1840 (2015).CrossRefGoogle Scholar
  14. 14.
    D. Wang, M. Jikuya, S. Yoshida, et al., IEEE Trans. Plasma Sci., 35, Iss. 4, 1098–1103 (2007).ADSCrossRefGoogle Scholar
  15. 15.
    V. F. Tarasenko, E. Kh. Baksht, A. G. Burachenko, and M. I. Lomaev, Plasma Phys. Rep., 43, No. 7, 792–795 (2017).ADSCrossRefGoogle Scholar
  16. 16.
    N. Yu. Babaeva and G. V. Naidis, Phys. Plasmas, 23, No. 8, 083227 (2016).CrossRefGoogle Scholar
  17. 17.
    N. Yu. Babaeva and G. V. Naidis, IEEE Trans. Plasma Sci., 44, No. 6, 899–902 (2016).ADSCrossRefGoogle Scholar
  18. 18.
    F. Pechereau, P. Le Delliou, J. Jansky, et al, IEEE Trans. Plasma Sci., 42, No. 10, 2346–2347 (2014).ADSCrossRefGoogle Scholar
  19. 19.
    G. V. Naidis, Phys. Rev. E, 79, No. 5, 057401 (2009).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • V. F. Tarasenko
    • 1
  • G. V. Naidis
    • 2
  • D. V. Beloplotov
    • 1
  • M. I. Lomaev
    • 1
  • D. A. Sorokin
    • 1
  • N. Yu. Babaeva
    • 2
  1. 1.Institute of High Current Electronics of the Siberian Branch of the Russian Academy of SciencesTomskRussia
  2. 2.Joint Institute for High Temperatures of the Russian Academy of SciencesMoscowRussia

Personalised recommendations