Russian Physics Journal

, Volume 61, Issue 6, pp 1129–1134 | Cite as

Effective Parameters of Acoustic Metamaterials

  • V. V. FisanovEmail author

Analytical expressions are presented for the wave number, the characteristic wave impedance, and the refractive index of homogeneous longitudinal plane waves propagating in an acoustic metamaterial with dissipative losses. The metamaterial is characterized by the effective scalar material parameters: the complex density and the compressibility. To distinguish between the forward and backward waves, the wave type identifier is introduced.


acoustic isotropic metamaterials effective complex density effective complex compressibility forward and backward plane waves wave vector refractive index wave impedance 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. W. Ziolkowski, EPJ Appl. Metamater., 1, 5-1–5-9 (2014).ADSCrossRefGoogle Scholar
  2. 2.
    L. Fok, M. Ambati, and X. Zhang, MRS Bull., 33, No.10, 931–934 (2008).CrossRefGoogle Scholar
  3. 3.
    V. A. Burtov, V. B. Voloshiniov, K. V. Dmitriev, and N. V. Polikarpov, Usp. Fiz. Nauk, 181, No. 11, 1205–1211 (2011).CrossRefGoogle Scholar
  4. 4.
    S. Guenneau and R. V. Craster, in: Acoustic Metamaterials, R V. Craster and S. Guenneau, eds., Springer, Dordrecht (2013), pp. 1–42.Google Scholar
  5. 5.
    M. I. Hussein, M. J. Leamy, and M. Ruzzene, Appl. Mech. Rev., 66, No. 4, 040802-1–040802-52 (2014).ADSGoogle Scholar
  6. 6.
    G. Ma and P. Sheng, Sci. Adv., 2, No. 2, e1501595-1–e1501595-16 (2016).ADSMathSciNetCrossRefGoogle Scholar
  7. 7.
    S. A. Cummer, J. Christensen, and A. Alù, Nat. Rev. Mater., 1, No. 3, 16001-1–16001-13 (2016).ADSCrossRefGoogle Scholar
  8. 8.
    M. R. Haberman and A. M. Norris, Acoust. Today, 12, No. 3, 31–39 (2016).Google Scholar
  9. 9.
    D. Lee, D. M. Nguyen, and J. Rho, Nano Converg., 4, No. 3, 1–15 (2017).Google Scholar
  10. 10.
    Z. Liu, X. Zhang, Y. Mao, et al., Science, 289, No. 5485, 1734–1736 (2000).ADSCrossRefGoogle Scholar
  11. 11.
    J. Li and C. T. Chan, Phys. Rev. E, 70, No. 5, 055602-1–055602-4 (2004).ADSGoogle Scholar
  12. 12.
    C. T. Chan, J. Li, and K. H. Fung, J. Zhejiang Univ. Sci. A, 7, No. 1, 24–28 (2006).CrossRefGoogle Scholar
  13. 13.
    F. I. Fedorov, Optics of Anisotropic Media [in Russian], Publishing House of the Belarusian Academy of SAciences, Minsk (1958).Google Scholar
  14. 14.
    V. G. Veselago, Fiz. Tverd. Tela, 8, No. 12, 3571–3573 (1966).Google Scholar
  15. 15.
    J. Dubois, C. Aristegui, and O. Poncelet, J. Appl. Phys., 115, No. 2, 024902-1–024902-7 (2014).ADSCrossRefGoogle Scholar
  16. 16.
    T. Brunet, O. Poncelet, and C. Aristegui, EPJ Appl. Metamater., 2, 3-1–3-6 (2015).CrossRefGoogle Scholar
  17. 17.
    L. B. Felsen and N. Marcuviz, Radiation and Scattering of Waves, Vol. I [Russian translation], Mir, Moscow (1978).Google Scholar
  18. 18.
    M. B. Vinogradova, O. V. Rudenko, and A. P. Sukhorukov, Theory of Waves [in Russian], Nauka, Moscow (1979).Google Scholar
  19. 19.
    V. G. Veselago, Usp. Fiz. Nauk, 92, No. 3, 517–526 (1967).CrossRefGoogle Scholar
  20. 20.
    V. V. Fisanov, Izv. Vysh. Uchebn. Zaved. Fiz., 60, No. 12/2, 5–7 (2017).Google Scholar
  21. 21.
    V. Fokin, M. Ambati, C. Sun, and X. Zhang, Phys. Rev. B, 76, No. 14, 144302-1–144302-5 (2007).ADSCrossRefGoogle Scholar
  22. 22.
    V. V. Fisanov, Russ. Phys. J., 57, No. 10, 1336–1341 (2015).MathSciNetCrossRefGoogle Scholar
  23. 23.
    V. V. Fisanov, Izv. Vyssh. Uchebn. Zaved. Fiz., 53, No. 9/2, 38–39 (2010).MathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.V. D. Kuznetsov Siberian Physical-Technical Institute at Tomsk State UniversityTomskRussia
  2. 2.National Research Tomsk State UniversityTomskRussia
  3. 3.Institute of Physical Material Science of the Siberian Branch of the Russian Academy of SciencesUlan-UdeRussia

Personalised recommendations