Russian Physics Journal

, Volume 61, Issue 6, pp 1121–1128 | Cite as

Orbital Evolution of Near-Earth Objects Under Conditions of Intersections of Resonances of Different Types

  • T. V. BordovitsynaEmail author
  • I. V. Tomilova
  • D. S. Krasavin

Special features of orbital evolution of near-earth objects under conditions of superposition of the 1:2 orbital resonance with rotation velocity of the Earth and secular apsidal-nodal resonances associated with the Moon and the Sun are considered. The special features are considered on the example of dynamics of objects moving in the medium Earth orbit (МЕО) zone in the range of semimajor axes from 26550 to 26570 km and in the range of orbit inclinations from 50 to 70°. It is demonstrated that joint action of stable orbital and secular resonances does not lead to chaoticity in object motion; at the same time, the chaoticity arises in all cases when one of the jointly acting resonances, orbital or secular, is unstable.


Earth’s artificial satellites orbital and secular resonances dynamic evolution 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T. V. Bordovitsyna and I. V. Tomilova, Russ. Phys. J., 59, No. 3, 365–373 (2016).CrossRefGoogle Scholar
  2. 2.
    I. V. Tomilova and T. V. Bordovitsyna, Russ. Phys. J., 60, No. 4, 693–700 (2017).CrossRefGoogle Scholar
  3. 3.
    A. G. Aleksandrova, T. V. Bordovitsyna, and I. M. Tomilova, in: M. L. Lidov – a Bright Name in Space Science [in Russian], Moscow (2016), pp. 49–68.Google Scholar
  4. 4.
    É. D. Kuznetsov, P. E. Zakharova, D. V. Glamazda, et al., Astron. Vestn., 46, No. 6, 480–488 (2012).Google Scholar
  5. 5.
    N. V. Emelyanov, Itogi Nauki Tekhn. Issled. Kosm. Prostr., 15, 44–63 (1980).Google Scholar
  6. 6.
    A. Morbidelli, Modern Celestial Mechanics: Aspects of Solar System Dynamics, Taylor & Francis, London (2002).Google Scholar
  7. 7.
    C. D. Murrey and S. F. Dermott, Solar System Dynamics [Russian translation], Fizmatlit, Moscow (2009).Google Scholar
  8. 8.
    A. G. Aleksandrova, T. V. Bordovitsyna, and I. N. Chuvashov, Russ. Phys. J., 60, No. 1, 80–89 (2017).CrossRefGoogle Scholar
  9. 9.
    P. Cincotta et al., Physica D, 182, 151–178 (2003).ADSMathSciNetCrossRefGoogle Scholar
  10. 10.
    T, V, Bordovitsyna, A. G. Aleksandrova, and I. N. Chuvashov, Izv. Vyssh. Uchebn. Zaved., Fiz., 53, No. 8/2, 14–21 (2010).Google Scholar
  11. 11.
    T. V. Bordovitsyna, I. V. Tomilova, and I. N. Chuvashov, Astron. Vestn., 46, No. 5, 356–368 (2012).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • T. V. Bordovitsyna
    • 1
    Email author
  • I. V. Tomilova
    • 1
  • D. S. Krasavin
    • 1
  1. 1.National Research Tomsk State UniversityTomskRussia

Personalised recommendations